Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 87(5): 1394-1400, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38706257

RESUMEN

The first total synthesis of bipenicilisorin (1) isolated from Penicillium chrysogenum SCSIO 41001 via its monomer natural product, penicilisorin (2), was achieved. Penicilisorin was synthesized in four steps from a o-bromobenzaldehyde derivative via the Pd-catalyzed one-pot fluorocarbonylation/lactonization/ß-elimination cascade reaction. Iodination of penicilisorin gave 7-iodopenicilisorin which was dimerized by Pd-catalyzed homodimerization to provide (±)-bipenicilisorin. The unknown absolute configuration of naturally occurring (+)-bipenicilisorin was examined by optical resolution of the (±)-synthetic bipenicilisorin and a comparison of experimental and theoretical electronic circular dichroism (ECD) spectra. These results support the absolute configuration of the natural product to be Sa. A cytotoxic activity test of (+)-and (-)-bipenicilisorin using A549 cells revealed that (+)-1 has a lower IC50 value than (-)-1.


Asunto(s)
Penicillium chrysogenum , Estructura Molecular , Humanos , Penicillium chrysogenum/química , Estereoisomerismo , Células A549 , Productos Biológicos/química , Productos Biológicos/síntesis química , Productos Biológicos/farmacología , Dicroismo Circular , Ensayos de Selección de Medicamentos Antitumorales
2.
J Am Chem Soc ; 145(42): 23143-23151, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844138

RESUMEN

High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.


Asunto(s)
Isquemia Encefálica , Proteína HMGB1 , Daño por Reperfusión , Ratas , Animales , Proteína HMGB1/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Heparina/metabolismo
3.
Mol Pharm ; 20(6): 3115-3126, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155370

RESUMEN

Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , Líquidos Iónicos , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Ratas , Animales , Edaravona , Antipirina/farmacología , Antipirina/uso terapéutico , Depuradores de Radicales Libres/uso terapéutico , Distribución Tisular , Daño por Reperfusión/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico
4.
Biol Pharm Bull ; 46(8): 1098-1104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532560

RESUMEN

Since small extracellular vesicle (sEVs) are involved in cell-to-cell communication via transfer of certain bioactive molecules and have the capability to overcome biological barriers against drug transport, their use as a drug delivery system (DDS) has been demonstrated in treatment of a diverse range of diseases. However, some issues in drug encapsulation have been pointed out, including low encapsulation efficiency and poor reproducibility. It was previously reported that liposomes containing phosphatidylserine (PS) can fuse together in the presence of calcium ion, which allows for drug encapsulation into the resultant liposomes (i.e., calcium fusion method). On the other hand, PS is reportedly present in lipid membrane of sEVs as a distinct lipid composition. We therefore hypothesized that PS-mediated membrane fusion of sEVs with PS-liposomes encapsulating therapeutic agents via the calcium fusion method can be applied to convenient drug encapsulation into sEVs. Membrane fusion of PS-liposomes and sEVs derived from murine melanoma B16F1 cells (B16-sEVs) was firstly confirmed. The obtained nanoparticles, termed chimeric nanoparticles (CM-NP), showed comparable cellular uptake to B16-sEVs into B16F1 cells. Moreover, CM-NP encapsulating an anticancer drug doxorubicin (DOX) (CM-NP-DOX) could be prepared by membrane fusion of PS-liposomes encapsulating DOX (PS-Lipo-DOX) and B16-sEVs. CM-NP-DOX exhibited a superior anticancer effect on B16F1 cells in vitro compared with PS-Lipo-DOX. These findings suggest that the calcium fusion method could be applied for membrane fusion of sEVs and PS-liposomes, and that this approach would likely be useful for efficient drug encapsulation into sEVs, as well as increasing liposome functionality.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Animales , Ratones , Liposomas , Calcio , Fusión de Membrana , Reproducibilidad de los Resultados , Doxorrubicina/farmacología , Lípidos
5.
Biol Pharm Bull ; 46(3): 494-504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858579

RESUMEN

Although the strategy in cancer vaccination is to provide a therapeutic effect against an established tumor, there is an urgent need to develop prophylactic vaccines for non-viral cancers. In this study, we prepared polyplex nanoparticles through electrostatic interactions between a positively-charged modified tumor associated antigen, namely human derived melanoma gp10025-33 peptide (KVPRNQDWL-RRRR), and a negatively charged cytosine-phosphate-guanosine motif (CpG-ODN) adjuvant. We previously demonstrated successful transdermal delivery of various hydrophilic macromolecules by iontophoresis (IP) using weak electricity. Herein, we investigated the effectiveness of IP in the transdermal delivery of a prophylactic polyplex vaccine. IP was successful in establishing a homogenous distribution of the vaccine throughout skin. Efficacy of the vaccine was demonstrated against melanoma growth. A significant tumor regression effect was observed, which was confirmed by elevated mRNA expression levels of various cytokines, mainly interferon (IFN)-γ, as well as infiltration of cytotoxic CD8+ T cells. Additionally, we evaluated the therapeutic effect of the vaccine and we found a significant reduction in tumor burden. Stimulation of systemic immunity was confirmed by upregulation of IFN-γ. This is the first report to demonstrate the use of IP in the transdermal delivery of a prophylactic melanoma vaccine.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Humanos , Iontoforesis , Linfocitos T CD8-positivos , Interferón gamma
6.
Biochem Biophys Res Commun ; 611: 53-59, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35477093

RESUMEN

Delivery of cerebroprotective agents using liposomes has been demonstrated to be useful for treating cerebral ischemia/reperfusion (I/R) injury. We previously reported that intravenous administration of liposomes with diameters of 100 nm showed higher accumulation in the I/R region compared with larger liposomes (>200 nm) by passage through the disintegrated blood-brain barrier, suggesting a size-dependence for liposome-mediated drug delivery. Based on these findings, we hypothesized that regulation of liposomal particle size (<100 nm) may enhance the therapeutic efficacy of encapsulated drugs on cerebral I/R injury. Herein, we prepared lipid nanoparticles (LNP) with particle sizes <100 nm by the microfluidics method and compared their therapeutic potential with LNP exhibiting sizes >100 nm in cerebral I/R model rats. Intravenously administered smaller LNP (ca. 60 nm) exhibited wider accumulation and diffusivity in the brain parenchyma of the I/R region compared with larger LNP (>100 nm). Importantly, treatment with LNP encapsulating the cerebroprotective agent FK506 (FK-LNP) with particle sizes <100 nm showed greater cerebroprotective effects than FK-LNP with sizes >100 nm, and also significantly ameliorated brain injury. These results suggest that particle size regulation of LNP to sizes <100 nm can enhance the therapeutic effect of encapsulated drugs for treatment of cerebral I/R injury, and that FK-LNP could be a promising cerebroprotective agent.


Asunto(s)
Isquemia Encefálica , Nanopartículas , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Isquemia Encefálica/tratamiento farmacológico , Liposomas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Tamaño de la Partícula , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Tacrolimus/farmacología , Tacrolimus/uso terapéutico
7.
Biol Pharm Bull ; 45(2): 194-199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35110506

RESUMEN

Delivery of medicines using nanoparticles via the enhanced permeability and retention (EPR) effect is a common strategy for anticancer chemotherapy. However, the extensive heterogeneity of tumors affects the applicability of the EPR effect, which needs to overcome for effective anticancer therapy. Previously, we succeeded in the noninvasive transdermal delivery of nanoparticles by weak electric current (WEC) and confirmed that WEC regulates the intercellular junctions in the skin by activating cell signaling pathways (J. Biol. Chem., 289, 2014, Hama et al.). In this study, we applied WEC to tumors and investigated the EPR effect with polyethylene glycol (PEG)-modified doxorubicin (DOX) encapsulated nanoparticles (DOX-NP) administered via intravenous injection into melanoma-bearing mice. The application of WEC resulted in a 2.3-fold higher intratumor accumulation of nanoparticles. WEC decreased the amount of connexin 43 in tumors while increasing its phosphorylation; therefore, the enhancing of intratumor delivery of DOX-NP is likely due to the opening of gap junctions. Furthermore, WEC combined with DOX-NP induced a significant suppression of tumor growth, which was stronger than with DOX-NP alone. In addition, WEC alone showed tumor growth inhibition, although it was not significant compared with non-treated group. These results are the first to demonstrate that effective anticancer therapy by combination of nanoparticles encapsulating chemotherapeutic agents and WEC.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Técnicas Electroquímicas , Melanoma/tratamiento farmacológico , Nanopartículas/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Neoplasias Experimentales , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Chem Pharm Bull (Tokyo) ; 70(5): 334-340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491189

RESUMEN

Targeted drug delivery using nanoparticles has been applied for the treatment of diverse diseases, including cancer and inflammatory diseases. Nanoparticle-mediated delivery of therapeutic agents via the enhanced permeability and retention effect generally augments their therapeutic efficiency; however, limitations with passive entry of nanoparticles into diseased sites, due to the presence of biological barriers represented by the endothelial layer, remain to be addressed. To this end, development of nanoparticles with intrinsic characteristics similar to circulatory cells (e.g., leukocytes, platelets) for use as biomimetic drug delivery systems (DDS) has been focused as a means to overcome the issues of conventional DDS. In particular, synthetic biomimetic nanoparticles coated with cellular membranes were recently prepared and shown to actively overcome the inflamed vessels and tumor microenvironment as a result of the functionality of membrane proteins, which allowed secure drug delivery into diseased sites. We recently developed liposomes modified with leukocyte membrane proteins via intermembrane protein transfer, a simple method to reconstitute cellular membrane proteins onto lipid bilayers. The resultant liposomes demonstrated the ability to cross the inflamed endothelial layer and permeate into tumor tissue by mimicking the properties of leukocytes. Thus, biomimetic DDS offer promise as new therapeutic approaches for various diseases by overcoming biological barriers that typically inhibit drug delivery. Herein, we review recent approaches to develop biomimetic DDS using the cell membrane coating method, and highlight our recent findings on leukocyte-mimetic liposomes prepared via intermembrane protein transfer.


Asunto(s)
Biomimética , Liposomas , Sistemas de Liberación de Medicamentos , Proteínas de la Membrana , Sistema de Administración de Fármacos con Nanopartículas
9.
Biol Pharm Bull ; 44(1): 46-50, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390549

RESUMEN

Obesity is a pathological state related to various lifestyle-related diseases, such as diabetes and dyslipidemia, that may be prevented through the development of anti-obesity treatments. Lipid accumulation in cells could be affected by vitamin E ester α-tocopheryl succinate (TS), which has various biological activities, such as anti-cancer effect, via activation of cell signaling pathways, although the antioxidative activity of TS is lost due to esterification of the phenolic OH group. In this study, we found for the first time that TS significantly suppressed lipid accumulation in mouse 3T3-L1 adipocytes. TS treatment reduced the amount of triglycerides in the culture medium, and inhibited activity of glycerol-3-phosphate dehydrogenase, a marker of lipid synthesis. Furthermore, TS accelerated lipolysis. Treatment of adipocytes with TS for 24 h induced no significant cytotoxicity. In TS-treated cells, phosphorylation of Akt, which is involved in fatty acid synthesis via sterol regulatory element-binding proteins (SREBP), was prevented, while levels of phosphorylated protein kinase A (PKA) did not change. Taken together, these results suggest that vitamin E ester TS can suppress lipid accumulation in adipocytes by regulating lipid metabolic cell signaling.


Asunto(s)
Adipocitos/efectos de los fármacos , Antioxidantes/farmacología , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , alfa-Tocoferol/farmacología , Células 3T3 , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Lipogénesis/fisiología , Lipólisis/fisiología , Ratones
10.
Biochem Biophys Res Commun ; 531(4): 622-627, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32819716

RESUMEN

Liposomal fasudil as a treatment for cerebral ischemia/reperfusion (I/R) injury has been demonstrated to be effective in animal models due to the high accumulation of liposomes in damaged brain tissue. However, it is still unclear what effect drug release rate has on the treatment of I/R injury, where pathology progresses dramatically in a short time. In the present study, we assessed four formulations of liposomal fasudil. The results of an in vitro drug release assay showed that the release properties of fasudil were changed by varying the lipid composition and internal phase of the liposomes. Based on these results, differences in the transition of fasudil plasma concentration were monitored after the administration of each type of liposomal fasudil in normal rats. A pharmacokinetic study showed that higher levels of drug retention in liposomal fasudil resulted in higher fasudil plasma concentration. Finally, treatment of I/R injury model rats with liposomal fasudil revealed that a mid-level release rate of fasudil from liposomes resulted in the greatest therapeutic effect among the formulations. In conclusion, these results demonstrate that an optimized drug release rate from liposomes enhances the therapeutic effect of fasudil for the treatment of cerebral I/R injury.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Liposomas/química , Daño por Reperfusión/tratamiento farmacológico , 1,2-Dipalmitoilfosfatidilcolina/química , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/sangre , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacocinética , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Sulfato de Amonio/química , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ácido Cítrico/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Liposomas/farmacocinética , Masculino , Fosfatidilcolinas/química , Compuestos de Amonio Cuaternario/química , Ratas Wistar , Daño por Reperfusión/patología , Resultado del Tratamiento
11.
Biol Pharm Bull ; 43(8): 1272-1274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741949

RESUMEN

Our previous study reported that co-encapsulation of potent antioxidants astaxanthin (Asx) and capsaisin (Cap) into liposomes brought about synergistically higher antioxidative activity than the calculated additive activity of each single antioxidant encapsulating liposome. Based on the previous computational chemistry analysis, the synergistic effect was revealed to be resulted from intermolecular interactions between Asx, especially 3R,3'R-form of Asx stereoisomer (Asx-R), and Cap, by which changes of electronic states of the polyene moiety of Asx-R were induced. Although liposomes co-encapsulating Asx-R and Cap (Asx-R/Cap-Lipo) at an optimal ratio clearly showed synergistic antioxidative activity in vitro, it is unclear whether the effective antioxidative activity derived from intermolecular interaction between Asx-R and Cap is also exerted in vivo. Therefore, in this study, we investigated therapeutic potential of Asx-R/Cap-Lipo as an antioxidant formulation in vivo. For this purpose, we employed carbon tetrachloride (CCl4)-induced acute liver injury rat model, since CCl4 is known to cause oxidative damage in liver. CCl4 administration significantly increased the levels of aspartate transaminase (AST) and alanine aminotransferase (ALT). Intravenous combined administration of liposomes encapsulating Asx-R (Asx-R-Lipo) and liposomes encapsulating Cap (Cap-Lipo) significantly decreased CCl4-induced increase of AST and ALT levels. Importantly, the treatment with Asx-R/Cap-Lipo tended to show higher protective effect on acute liver injury than combined treatment with Asx-R-Lipo plus Cap-Lipo. These results suggest that co-encapsulated Asx-R and Cap in liposomal membranes could exert more effective antioxidative activities in vivo, and that Asx-R/Cap-Lipo would be a hopeful antioxidant formulation for treating reactive oxygen species-related diseases.


Asunto(s)
Antioxidantes/farmacología , Capsaicina/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Aguda , Animales , Capsaicina/química , Capsaicina/farmacología , Tetracloruro de Carbono , Liposomas , Masculino , Ratas , Ratas Wistar , Xantófilas/administración & dosificación , Xantófilas/química , Xantófilas/farmacología
12.
Biol Pharm Bull ; 43(11): 1729-1734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132318

RESUMEN

Technologies that overcome the barrier presented by vascular endothelial cells are needed to facilitate targeted delivery of drugs into tissue parenchyma by intravenous administration. We previously reported that weak electric current treatment (ET: 0.3-0.5 mA/cm2) applied onto skin tissue in a transdermal drug delivery technique termed iontophoresis induces cleavage of intercellular junctions that results in permeation of macromolecules such as small interfering RNA and cytosine-phosphate-guanine (CpG) oligonucleotide through the intercellular space. Based on these findings, we hypothesized that application of ET to blood vessels could promote cleavage of intercellular junctions that artificially induces increase in vascular permeability to enhance extravasation of drugs from the vessels into target tissue parenchyma. Here we investigated the effect of ET (0.34 mA/cm2) on vascular permeability using embryonated chicken eggs, which have blood vessels in the chorioallantoic membrane (CAM), as an animal model. ET onto the CAM of the eggs significantly increased extravasation of intravenously injected calcein (M.W. 622.6), a low molecular weight compound model, and the macromolecule fluorescein isothiocyanate (FITC)-dextran (M.W. 10000). ET-mediated promotion of penetration of FITC-dextran through vascular endothelial cells was also observed in transwell permeability assay using monolayer of human umbilical vein endothelial cells without induction of obvious cellular damage. Confocal microscopy detected remarkable fluorescence derived from injected FITC-dextran in blood vessel walls. These results in embryonated chicken eggs suggest that ET onto blood vessels could artificially enhance vascular permeability to facilitate extravasation of macromolecules from blood vessels.


Asunto(s)
Permeabilidad Capilar , Dextranos/administración & dosificación , Endotelio Vascular/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Animales , Pollos , Membrana Corioalantoides/irrigación sanguínea , Dextranos/farmacocinética , Estimulación Eléctrica , Endotelio Vascular/citología , Fluoresceína-5-Isotiocianato/administración & dosificación , Fluoresceína-5-Isotiocianato/farmacocinética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inyecciones Intravenosas , Microscopía Confocal
13.
J Clin Biochem Nutr ; 66(3): 224-232, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32523249

RESUMEN

Oxidative stress induced by decreases in tear volume and excessive tear evaporation is a key factor in dry eye disease (DED). Previously, we reported that desiccation stress induces reactive oxygen species generation and up-regulated expression of age-related markers such as p53, p21 and p16. We also showed that the antioxidant astaxanthin prepared as a liposomal formulation could suppress these phenomena in the in vitro DED model. In this study, we evaluated the protective effect of liposomes encapsulating astaxanthin against superficial punctate keratopathy (SPK) in the in vivo rat DED model. This model of DED was characterized by decreased tear volume and increased fluorescein score as an indicator of SPK as well as upregulated expression of age-related markers. Repeat-dose of liposomal astaxanthin prevented increases in the fluorescein score and up-regulation of age-related markers. Liposomes bearing a slight positive surface charge had superior effects and higher affinity compared to neutral liposomes. Furthermore, fluorescence intensities in rat corneal epithelium after administration of high-affinity liposomes labeled with fluorescent dye were higher than those for neutral liposomes. In conclusion, we developed the high-affinity liposomal formulation that can prevent DED and promote antioxidative effects of astaxanthin.

14.
Biomacromolecules ; 20(10): 3648-3657, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31518109

RESUMEN

The affinity of a synthetic polymer nanoparticle (NP) to a target biomacromolecule is determined by the association and dissociation rate constants (kon, koff) of the interaction. The individual rates and their sensitivity to local environmental influences are important factors for the on-demand capture and release a target biomacromolecule. Positively charged NPs for small interfering RNA (siRNA) delivery is a case in point. The knockdown efficacy of siRNA can be strongly influenced by the binding kinetics to the NP. Here, we show that kon and koff of siRNA to NPs can be individually engineered by tuning the chemical structure and composition of the NP. N-Isopropylacrylamide-based NPs functionalized with hydrophobic and amine monomers were used. koff decreased by increasing the amount of amine groups in the NP, whereas kon did not change. Importantly, NPs showing a low koff at pH 5.5 together with a high koff at pH 7.4 showed high knockdown efficiency when NP/siRNA complexes were packaged in lipid nanoparticles. These results provide direct evidence for the premise that the efficacy of an siRNA delivery vector is linked with the strong affinity to the siRNA in the endosome and low affinity in the cytoplasm.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , ARN Interferente Pequeño/metabolismo , Acrilamidas/química , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Ratones , ARN Interferente Pequeño/genética , Polímeros de Estímulo Receptivo/química
15.
Biol Pharm Bull ; 42(3): 319-326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828062

RESUMEN

Ischemic stroke is one of the leading causes of severe disability and death. In clinical settings, tissue plasminogen activator (t-PA) for thrombolytic therapy is the only globally approved drug for the treatment of ischemic stroke. However, the proportion of patients who receive t-PA therapy is extremely limited due to its narrow therapeutic time window (TTW) and the risk of cerebral hemorrhage. Cerebral ischemia-reperfusion (I/R) injury is also a serious problem for patients' outcomes. Hence, the development of more effective therapies has been desired to prolong the TTW of t-PA and prevent cerebral I/R injury. For delivering drugs into the brain, the blood-brain barrier (BBB) must be overcome since it limits drug penetration into the brain, leading to insufficient therapeutic efficacy. As a distinctive pathology after an ischemic stroke, it was reported that the vascular permeability of the BBB is increased around the ischemic region. We found that nano-sized liposomes can pass through the disrupted BBB and accumulate in the I/R region, and that delivery of neuroprotective agents using a liposomal drug delivery system (DDS) is effective for the treatment of cerebral I/R injury. Moreover, we have recently demonstrated that combination therapy with liposomal drugs and t-PA can suppress the deleterious effects of t-PA and extend its TTW in a rat ischemic stroke model. These findings indicate that applications of nanoparticle DDS technology could be a hopeful approach to drug development for ischemic stroke therapy. In this review, we introduce our findings on ischemic stroke treatment using liposomal DDS and recent advances from other research groups.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Fármacos Neuroprotectores/administración & dosificación , Accidente Cerebrovascular/tratamiento farmacológico , Humanos , Liposomas , Fármacos Neuroprotectores/uso terapéutico
16.
J Clin Biochem Nutr ; 64(1): 27-35, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30705509

RESUMEN

Decreases in tear volume, unstable tear films and excessive tear evaporation are known to cause desiccation and hyperosmolar stress. These, in turn, induce oxidative stress that is thought to cause dry eye, which is also considered to be age-related disease. We hypothesized that oxidative stress induces up-regulation of age-related markers, and that the antioxidant astaxanthin prepared as a liposomal formulation may be a candidate for the treatment of dry eye. Herein, we examined age-related markers in an in vitro dry eye model, and evaluated the efficacy of high-affinity liposomes containing astaxanthin. The in vitro dry eye model showed desiccation time-dependent increases in reactive oxygen species. We confirmed the up-regulation of p53, p21 and p16 as a function of desiccation time. Pretreatment with both neutral and slightly-positively-charged astaxanthin liposomal formulations showed significant suppression of up-regulation of all markers, with the positively-charged liposomes exhibiting the greatest efficacy. Furthermore, positively-charged liposomes labeled with fluorescent dyes demonstrated much higher affinity to normal human corneal epithelial cells (HCECs) than neutral liposomes. Taken together, we confirmed the up-regulation of age-related markers, especially p16, in an in vitro dry eye model, and demonstrated the potential of high-affinity liposomal astaxanthin for the treatment of dry eye.

17.
Biochem Biophys Res Commun ; 495(1): 873-877, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29162447

RESUMEN

Delivery of neuroprotectants with liposomes has been shown to be effective for the treatment of ischemic stroke. We have recently revealed that intravenous administration of liposomal fasudil (Fasudil-Lip), a Rho-kinase inhibitor, prior to thrombolysis with tissue plasminogen activator (t-PA) can extend the narrow therapeutic time window (TTW) of t-PA. In the present study, we examined the influence of t-PA treatment on liposomal accumulation into the ischemic region and cerebroprotective effect of combined treatment with Fasudil-Lip and t-PA performed at the same timing after the onset of ischemia in middle cerebral artery occlusion (MCAO) prepared by photochemically induced thrombosis. The t-PA administration into MCAO rats 3 h after occlusion brought about significantly higher accumulation of intravenously injected PEGylated liposomes in wide area of ischemic region. Confocal images showed that extravasation of the liposomes from cerebral vessels into brain parenchyma was markedly facilitated by the t-PA treatment which increased blood flow in cerebral vessels. Importantly, co-administration of Fasudil-Lip and t-PA after 3 h occlusion, beyond the TTW of t-PA in MCAO rats, significantly suppressed brain cell damage compared with t-PA treatment alone. These findings suggest that co-administration of Fasudil-Lip and t-PA should lead to prolong t-PA's TTW and become a useful therapeutic option for ischemic stroke.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/fisiopatología , Liposomas/química , Activador de Tejido Plasminógeno/administración & dosificación , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/administración & dosificación , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Combinación de Medicamentos , Fibrinolíticos/administración & dosificación , Infarto de la Arteria Cerebral Media/patología , Inyecciones Intravenosas , Liposomas/administración & dosificación , Masculino , Fármacos Neuroprotectores/administración & dosificación , Fotoquímica/métodos , Ratas , Ratas Wistar , Resultado del Tratamiento , Vasodilatadores/administración & dosificación
18.
FASEB J ; 31(5): 1879-1890, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28082354

RESUMEN

For ischemic stroke treatment, extension of the therapeutic time window (TTW) of thrombolytic therapy with tissue plasminogen activator (tPA) and amelioration of secondary ischemia/reperfusion (I/R) injury are most desirable. Our previous studies have indicated that liposomal delivery of neuroprotectants into an ischemic region is effective for stroke treatment. In the present study, for solving the above problems in the clinical setting, the usefulness of combination therapy with tPA and liposomal fasudil (fasudil-Lip) was investigated in ischemic stroke model rats with photochemically induced thrombosis, with clots that were dissolved by tPA. Treatment with tPA 3 h after occlusion markedly increased blood-brain barrier permeability and activated matrix metalloproteinase (MMP)-2 and -9, which are involved in cerebral hemorrhage. However, an intravenous administration of fasudil-Lip before tPA markedly suppressed the increase in permeability and the MMP activation stemming from tPA. The combination treatment showed significantly larger neuroprotective effects, even in the case of delayed tPA administration compared with each treatment alone or the tPA/fasudil-treated group. These findings suggest that treatment with fasudil-Lip before tPA could decrease the risk of tPA-derived cerebral hemorrhage and extend the TTW of tPA and that the combination therapy could be a useful therapeutic option for ischemic stroke.-Fukuta, T., Asai, T., Yanagida, Y., Namba, M., Koide, H., Shimizu, K., Oku, N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Liposomas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Masculino , Fármacos Neuroprotectores/administración & dosificación , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Activador de Tejido Plasminógeno/administración & dosificación
19.
Artículo en Inglés | MEDLINE | ID: mdl-29462674

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive phospholipid that induces diverse biological responses. Recently, we found that LPA ameliorates NSAIDs-induced gastric ulcer in mice. Here, we quantified LPA in 21 medicinal herbs used for treatment of gastrointestinal (GI) disorders. We found that half of them contained LPA at relatively high levels (40-240 µg/g) compared to soybean seed powder (4.6 µg/g), which we previously identified as an LPA-rich food. The LPA in peony (Paeonia lactiflora) root powder is highly concentrated in the lipid fraction that ameliorates indomethacin-induced gastric ulcer in mice. Synthetic 18:1 LPA, peony root LPA and peony root lipid enhanced prostaglandin E2 production in a gastric cancer cell line, MKN74 cells that express LPA2 abundantly. These materials also prevented indomethacin-induced cell death and stimulated the proliferation of MKN74 cells. We found that LPA was present in stomach fluids at 2.4 µM, which is an effective LPA concentration for inducing a cellular response in vitro. These results indicated that LPA is one of the active components of medicinal herbs for the treatment of GI disorder and that orally administered LPA-rich herbs may augment the protective actions of endogenous LPA on gastric mucosa.


Asunto(s)
Dinoprostona/metabolismo , Indometacina/efectos adversos , Lisofosfolípidos/uso terapéutico , Plantas Medicinales/química , Animales , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo
20.
Chem Pharm Bull (Tokyo) ; 66(7): 714-720, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962454

RESUMEN

We previously found that antioxidative activity of liposomes co-encapsulating astaxanthin (Asx) and tocotrienols (T3s) was higher than the calculated additive activity, which results from intermolecular interactions between both antioxidants (J. Clin. Biochem. Nutr., 59, 2016, Kamezaki et al.). Herein, we conducted experiments to optimize Asx/α-T3 ratio for high antioxidative activity, and tried to elucidate details of intermolecular interaction of Asx with α-T3. Higher activity than calculated additive value was clearly observed at an Asx/α-T3 ratio of 2 : 1, despite two α-T3 would potentially interact with two terminal rings of one Asx. The synthetic Asx used in this study was a mixture of three stereoisomers, 3R,3'R-form (Asx-R), 3S,3'S-form (Asx-S) and 3R,3'S-meso form (Asx-meso). The calculated binding energy of the Asx-S/α-T3 complex was higher than those of Asx-R/α-T3 and Asx-meso/α-T3, suggesting that Asx-S and α-T3 is the most preferable combination for the intermolecular interaction. The optimal Asx-S/α-T3 ratio for antioxidation was shown to be 1 : 2. These results suggest that the Asx stereochemistry affects the intermolecular interaction of Asx/α-T3. Moreover, the absorption spectrum changes of Asx-S upon co-encapsulation with α-T3 in liposomes indicate that the electronic state of Asx-S is affected by intermolecular interactions with α-T3. Further, intermolecular interactions with α-T3 affected the electronic charges on the C9, C10 and C15 atoms in the polyene moiety of Asx-S. In conclusion, the intermolecular interaction of Asx/T3 depends on the Asx stereochemistry, and caused a change in the electronic state of the Asx polyene moiety by the presence of double bond in the T3 triene moiety.


Asunto(s)
Antioxidantes/química , Carotenoides/química , Liposomas/química , Tocotrienoles/química , Antioxidantes/síntesis química , Liposomas/síntesis química , Estructura Molecular , Estereoisomerismo , Xantófilas/síntesis química , Xantófilas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA