Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(7): e106177, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694180

RESUMEN

TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal , Proteínas de Unión al ADN/genética , Histona Desacetilasa 6/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación Missense
2.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917352

RESUMEN

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Asunto(s)
Organismos Acuáticos , Bacterias , Contaminantes Ambientales , Compuestos Organofosforados , Hidrolasas de Triéster Fosfórico , Organismos Acuáticos/enzimología , Bacterias/enzimología , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Océano Índico , Mar Mediterráneo , Compuestos Organofosforados/metabolismo , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Fósforo/metabolismo , Agua de Mar/microbiología
3.
Faraday Discuss ; 249(0): 453-468, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37781876

RESUMEN

Hydration of biological membranes is essential to a wide range of biological processes. In particular, it is intrinsically linked to lipid thermodynamic properties, which in turn influence key cell functions such as ion permeation and protein mobility. Experimental and theoretical studies of the surface of biomembranes have revealed the presence of an interfacial repulsive force, which has been linked to hydration or steric effects. Here, we directly characterise the atomic-scale structure of water near supported lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in their gel and liquid phase through three-dimensional atomic force microscopy (3D AFM). First, we demonstrate the ability to probe the morphology of interfacial water of lipid bilayers in both phases with sub-molecular resolution by using ultrasharp tips. We then visualise the molecular arrangement of water at the lipid surface at different temperatures. Our experiments reveal that water is organised in multiple hydration layers on both the solid-ordered and liquid-disordered lipid phases. Furthermore, we observe a monotonic repulsive force, which becomes relevant only in the liquid phase. These results offer new insights into the water structuring near soft biological surfaces, and demonstrate the importance of investigating it with vertical and lateral sub-molecular resolution.

4.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33790019

RESUMEN

Nonlinear mechanics of solids is an exciting field that encompasses both beautiful mathematics, such as the emergence of instabilities and the formation of complex patterns, as well as multiple applications. Two-dimensional crystals and van der Waals (vdW) heterostructures allow revisiting this field on the atomic level, allowing much finer control over the parameters and offering atomistic interpretation of experimental observations. In this work, we consider the formation of instabilities consisting of radially oriented wrinkles around mono- and few-layer "bubbles" in two-dimensional vdW heterostructures. Interestingly, the shape and wavelength of the wrinkles depend not only on the thickness of the two-dimensional crystal forming the bubble, but also on the atomistic structure of the interface between the bubble and the substrate, which can be controlled by their relative orientation. We argue that the periodic nature of these patterns emanates from an energetic balance between the resistance of the top membrane to bending, which favors large wavelength of wrinkles, and the membrane-substrate vdW attraction, which favors small wrinkle amplitude. Employing the classical "Winkler foundation" model of elasticity theory, we show that the number of radial wrinkles conveys a valuable relationship between the bending rigidity of the top membrane and the strength of the vdW interaction. Armed with this relationship, we use our data to demonstrate a nontrivial dependence of the bending rigidity on the number of layers in the top membrane, which shows two different regimes driven by slippage between the layers, and a high sensitivity of the vdW force to the alignment between the substrate and the membrane.

5.
Arch Pharm (Weinheim) ; 357(1): e2300424, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37828623

RESUMEN

The pneumonia (COVID-19) outbreak caused by the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which unpredictably exploded in late December of 2019 has stressed the importance of being able to control potential pathogens with the aim of limiting their spread. Although vaccines are well known as a powerful tool for ensuring public health and controlling the pandemic, disinfection and hygiene habits remain crucial to prevent infection from spreading and maintain the barrier, especially when the microorganism can persist and survive on textiles, surfaces, and medical devices. During the coronavirus disease pandemic, around half of the disinfectants authorized by the US Environmental Protection Agency contained quaternary ammonium compounds (QACs); their effectiveness had not been proven. Herein, the in vitro SARS-CoV-2 inactivation by p-bromodomiphen bromide, namely bromiphen (BRO), a new, potent, and fast-acting QAC is reported. This study demonstrates that BRO, with a dose as low as 0.02%, can completely inhibit SARS-CoV-2 replication in just 30 s. Its virucidal activity was 10- and 100-fold more robust compared to other commercially available QACs, namely domiphen bromide and benzalkonium chloride. The critical micellar concentration and the molecular lipophilicity potential surface area support the relevance of the lipophilic nature of these molecules for their activity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , Compuestos de Amonio Cuaternario/farmacología , Bromuros , Relación Estructura-Actividad
6.
J Immunol ; 207(2): 671-684, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34162728

RESUMEN

The regulatory role of protein tyrosine kinases in ß1- and ß2-integrin activation and in the survival of chronic lymphocytic leukemia (CLL) cells is well established. In contrast, the involvement of protein tyrosine phosphatases in CLL biology was less investigated. We show that selective activation of the protein tyrosine phosphatase receptor type γ (PTPRG) strongly suppresses integrin activation and survival in leukemic B cells isolated from patients with CLL. Activation of PTPRG specifically inhibits CXCR4- as well as BCR-induced triggering of LFA-1 and VLA-4 integrins and mediated rapid adhesion. Triggering of LFA-1 affinity is also prevented by PTPRG activity. Analysis of signaling mechanisms shows that activation of PTPRG blocks chemokine-induced triggering of JAK2 and Bruton's tyrosine kinase protein tyrosine kinases and of the small GTP-binding protein RhoA. Furthermore, activated PTPRG triggers rapid and robust caspase-3/7-mediated apoptosis in CLL cells in a manner quantitatively comparable to the Bruton's tyrosine kinase inhibitor ibrutinib. However, in contrast to ibrutinib, PTPRG-triggered apoptosis is insensitive to prosurvival signals generated by CXCR4 and BCR signaling. Importantly, PTPRG activation does not trigger apoptosis in healthy B lymphocytes. The data show that activated PTPRG inhibits, at once, the signaling pathways controlling adhesion and survival of CLL cells, thus emerging as a negative regulator of CLL pathogenesis. These findings suggest that pharmacological potentiation of PTPRG tyrosine-phosphatase enzymatic activity could represent a novel approach to CLL treatment.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Integrina alfa4beta1/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
Bioorg Chem ; 138: 106675, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329813

RESUMEN

As a rich source of biological active compounds, marine natural products have been increasingly screened as candidates for developing new drugs. Among the several marine products and metabolites, (+)-Harzialactone A has drawn considerable attention for its antitumor and antileishmanial activity. In this work a chemoenzymatic approach has been implemented for the preparation of the marine metabolite (+)-Harzialactone A. The synthesis involved a stereoselective, biocatalyzed reduction of the prochiral ketone 4-oxo-5-phenylpentanoic acid or the corresponding esters, all generated by chemical reactions. A collection of different promiscuous oxidoreductases (both wild-type and engineered) and diverse microorganism strains were investigated to mediate the bioconversions. After co-solvent and co-substrate investigation in order to enhance the bioreduction performance, T. molischiana in presence of NADES (choline hydrochloride-glucose) and ADH442 were identified as the most promising biocatalysts, allowing the obtainment of the (S)-enantiomer with excellent ee (97% to > 99% respectively) and good to excellent conversion (88% to 80% respectively). The successful attempt in this study provides a new chemoenzymatic approach for the synthesis of (+)-Harzialactone A.


Asunto(s)
Cetonas , Oxidorreductasas , Biocatálisis , Cetonas/química , Oxidorreductasas/metabolismo , Estereoisomerismo
8.
Alzheimers Dement ; 19(4): 1245-1259, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993441

RESUMEN

INTRODUCTION: The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. METHODS: We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. RESULTS: Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. DISCUSSION: We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Animales , Humanos , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína C9orf72/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Sistemas CRISPR-Cas , Pez Cebra/genética , Pez Cebra/metabolismo , Neuronas/metabolismo , Expansión de las Repeticiones de ADN/genética , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo
9.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513213

RESUMEN

Human exposure to dicarbonyls occurs via ingestion (e.g., food), inhalation (e.g., electronic cigarettes) and dysregulation of endogenous metabolic pathways (e.g., glycolysis). Dicarbonyls are electrophiles able to induce carbonylation of endogenous substrate. They have been associated with the onset and progression of several human diseases. Several studies have advocated the use of dicarbonyl binders as food preservatives or as drugs aimed at mitigating carbonylation. This study presents the setup of an easy and cheap assay for the screening of selective and potent dicarbonyl binders. The method is based on the incubation of the candidate molecules with a molecular probe. The activity is then determined by measuring the residual concentration of the molecular probe over time by liquid chromatography (LC). However, the naturally occurring dicarbonyls (e.g., glyoxal, methylglyoxal) are not appealing as probes since they are hard to separate and detect using the most popular LC variants. Benzylglyoxal (BGO) was therefore synthesized and tested, proving to be a convenient probe that allows a direct quantification of residual dicarbonyls by reversed phase LC without derivatization. The method was qualified by assessing the binding ability of some molecules known as binders of natural occurring dicarbonyls, obtaining results consistent with literature.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Humanos , Glioxal , Piruvaldehído/química , Cromatografía Liquida/métodos , Sondas Moleculares
10.
Molecules ; 28(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049856

RESUMEN

Obesity and type 2 diabetes (T2DM) are major public health concerns associated with serious morbidity and increased mortality. Both obesity and T2DM are strongly associated with adiposopathy, a term that describes the pathophysiological changes of the adipose tissue. In this review, we have highlighted adipose tissue dysfunction as a major factor in the etiology of these conditions since it promotes chronic inflammation, dysregulated glucose homeostasis, and impaired adipogenesis, leading to the accumulation of ectopic fat and insulin resistance. This dysfunctional state can be effectively ameliorated by the loss of at least 15% of body weight, that is correlated with better glycemic control, decreased likelihood of cardiometabolic disease, and an improvement in overall quality of life. Weight loss can be achieved through lifestyle modifications (healthy diet, regular physical activity) and pharmacotherapy. In this review, we summarized different effective management strategies to address weight loss, such as bariatric surgery and several classes of drugs, namely metformin, GLP-1 receptor agonists, amylin analogs, and SGLT2 inhibitors. These drugs act by targeting various mechanisms involved in the pathophysiology of obesity and T2DM, and they have been shown to induce significant weight loss and improve glycemic control in obese individuals with T2DM.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Calidad de Vida , Obesidad/terapia , Obesidad/tratamiento farmacológico , Pérdida de Peso
11.
Bioinformatics ; 37(8): 1174-1175, 2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-33289523

RESUMEN

The purpose of the article is to offer an overview of the latest release of the VEGA suite of programs. This software has been constantly developed and freely released during the last 20 years and has now reached a significant diffusion and technology level as confirmed by the about 22 500 registered users. While being primarily developed for drug design studies, the VEGA package includes cheminformatics and modeling features, which can be fruitfully utilized in various contexts of the computational chemistry. To offer a glimpse of the remarkable potentials of the software, some examples of the implemented features in the cheminformatics field and for structure-based studies are discussed. Finally, the flexible architecture of the VEGA program which can be expanded and customized by plug-in technology or scripting languages will be described focusing attention on the HyperDrive library including highly optimized functions. AVAILABILITY AND IMPLEMENTATION: The VEGA suite of programs and the source code of the VEGA command-line version are available free of charge for non-profit organizations at http://www.vegazz.net.


Asunto(s)
Quimioinformática , Bibliotecas , Diseño de Fármacos , Programas Informáticos
12.
Acta Neuropathol ; 144(3): 465-488, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35895140

RESUMEN

A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Daño del ADN , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Enfermedad de Pick/genética , ARN/metabolismo , ARN sin Sentido , Pez Cebra/genética , Pez Cebra/metabolismo
13.
Chembiochem ; 22(5): 894-903, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33105515

RESUMEN

Quinone methide (QM) chemistry is widely applied including in enzyme inhibitors. Typically, enzyme-mediated bond breaking releases a phenol product that rearranges into an electrophilic QM that in turn covalently modifies protein side chains. However, the factors that govern the reactivity of QM-based inhibitors and their mode of inhibition have not been systematically explored. Foremost, enzyme inactivation might occur in cis, whereby a QM molecule inactivates the very same enzyme molecule that released it, or by trans if the released QMs diffuse away and inactivate other enzyme molecules. We examined QM-based inhibitors for enzymes exhibiting phosphoester hydrolase activity. We tested different phenolic substituents and benzylic leaving groups, thereby modulating the rates of enzymatic hydrolysis, phenolate-to-QM rearrangement, and the electrophilicity of the resulting QM. By developing assays that distinguish between cis and trans inhibition, we have identified certain combinations of leaving groups and phenyl substituents that lead to inhibition in the cis mode, while other combinations gave trans inhibition. Our results suggest that cis-acting QM-based substrates could be used as activity-based probes to identify various phospho- and phosphono-ester hydrolases, and potentially other hydrolases.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indolquinonas/química , Indolquinonas/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Hidrólisis , Organofosfatos/metabolismo
14.
J Nanobiotechnology ; 19(1): 167, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082783

RESUMEN

Liposomes are widely used as drug delivery carriers and as cell model systems. Here, we measure the dielectric properties of individual liposomes adsorbed on a metal electrode by in-liquid scanning dielectric microscopy in force detection mode. From the measurements the lamellarity of the liposomes, the separation between the lamellae and the specific capacitance of the lipid bilayer can be obtained. As application we considered the case of non-extruded DOPC liposomes with radii in the range ~ 100-800 nm. Uni-, bi- and tri-lamellar liposomes have been identified, with the largest population corresponding to bi-lamellar liposomes. The interlamellar separation in the bi-lamellar liposomes is found to be below ~ 10 nm in most instances. The specific capacitance of the DOPC lipid bilayer is found to be ~ 0.75 µF/cm2 in excellent agreement with the value determined on solid supported planar lipid bilayers. The lamellarity of the DOPC liposomes shows the usual correlation with the liposome's size. No correlation is found, instead, with the shape of the adsorbed liposomes. The proposed approach offers a powerful label-free and non-invasive method to determine the lamellarity and dielectric properties of single liposomes.


Asunto(s)
Portadores de Fármacos , Liposomas/química , Microscopía , Sistemas de Liberación de Medicamentos , Membrana Dobles de Lípidos , Nanotecnología/métodos
15.
Langmuir ; 36(43): 12963-12972, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33084346

RESUMEN

The specific capacitance of biological membranes is a key physical parameter in bioelectricity that also provides valuable physicochemical information on composition, phase, or hydration properties. Cholesterol is known to modulate the physicochemical properties of biomembranes, but its effect on the specific capacitance has not been fully established yet. Here we use the high spatial resolution capabilities of in-liquid scanning dielectric microscopy in force detection mode to directly demonstrate that DOPC bilayer patches at 50% cholesterol concentration show a strong reduction of their specific capacitance with respect to pure DOPC bilayer patches. The reduction observed (∼35%) cannot be explained by the small increase in bilayer thickness (∼16%). We suggest that the reduction of the specific capacitance might be due to the dehydration of the polar head groups caused by the insertion of cholesterol molecules in the bilayer. The results reported confirm the potential of in-liquid SDM to study the electrical and physicochemical properties of lipid bilayers at very small scales (down to ∼200 nm here), with implications in fields such as biophysics, bioelectricity, biochemistry, and biosensing.

16.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825082

RESUMEN

Structure-based virtual screening is a truly productive repurposing approach provided that reliable target structures are available. Recent progresses in the structural resolution of the G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing studies. Hence, the present study describes structure-based virtual screening campaigns with a view to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise identification of this binding cavity. First, a docking protocol was developed and optimized based on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach by using a purposely collected database including known allosteric modulators. The so-developed consensus models were then utilized to virtually screen the DrugBank database. Based on the computational results, six promising molecules were selected and experimentally tested and four of them revealed interesting affinity data; in particular, dequalinium showed a very impressive allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing the key role of ligand flexibility as well as of arrangement and delocalization of the positively charged moieties.


Asunto(s)
Sitio Alostérico , Antiinfecciosos Locales/farmacología , Colinérgicos/farmacología , Decualinio/farmacología , Reposicionamiento de Medicamentos , Receptores Muscarínicos/química , Regulación Alostérica , Animales , Antiinfecciosos Locales/química , Células CHO , Colinérgicos/química , Cricetinae , Cricetulus , Decualinio/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores Muscarínicos/metabolismo
17.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143488

RESUMEN

l-Carnosine (ß-Ala-l-His) and several other histidine-containing peptides, including two N-methylated forms on the imidazole ring (l-anserine and l-balenine), two derivatives modified on the carboxyl function (carcinine and l-carnosinamide), two analogues differing in the length of the N-terminal residue (l-homocarnosine and Gly-l-His) and the N-acetyl derivatives, were investigated as activators of four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The four human isoforms hCA I, II, VA and IX were activated in the low to high micromolar range, with a rather complex structure activity relationship. A performed computational study allowed us to rationalize these results and to propose a binding mode of these activators within the enzyme active site. Similarly to other CA activators, the here studied peptides could find relevant pharmacological applications such as in the management of CA deficiencies, for therapy memory and enhancing cognition or for artificial tissues engineering.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Carnosina/química , Dipéptidos/química , Histidina/química , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica V/metabolismo , Carnosina/análogos & derivados , Quelantes/farmacología , Humanos , Cinética , Modelos Moleculares , Dominios Proteicos , Protones , Programas Informáticos
18.
Molecules ; 25(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340373

RESUMEN

Diabetes Mellitus (DM) is a multi-factorial chronic health condition that affects a large part of population and according to the World Health Organization (WHO) the number of adults living with diabetes is expected to increase. Since type 2 diabetes mellitus (T2DM) is suffered by the majority of diabetic patients (around 90-95%) and often the mono-target therapy fails in managing blood glucose levels and the other comorbidities, this review focuses on the potential drugs acting on multi-targets involved in the treatment of this type of diabetes. In particular, the review considers the main systems directly involved in T2DM or involved in diabetes comorbidities. Agonists acting on incretin, glucagon systems, as well as on peroxisome proliferation activated receptors are considered. Inhibitors which target either aldose reductase and tyrosine phosphatase 1B or sodium glucose transporters 1 and 2 are taken into account. Moreover, with a view at the multi-target approaches for T2DM some phytocomplexes are also discussed.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Susceptibilidad a Enfermedades , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Glucosa/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Incretinas/química , Incretinas/farmacología , Incretinas/uso terapéutico , Ligandos , Terapia Molecular Dirigida , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA