Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Circulation ; 133(20): 1936-44, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27006481

RESUMEN

BACKGROUND: The mechanisms of right ventricular (RV) failure in pulmonary arterial hypertension (PAH) are poorly understood. Abnormalities in fatty acid (FA) metabolism have been described in experimental models of PAH, but systemic and myocardial FA metabolism has not been studied in human PAH. METHODS AND RESULTS: We used human blood, RV tissue, and noninvasive imaging to characterize multiple steps in the FA metabolic pathway in PAH subjects and controls. Circulating free FAs and long-chain acylcarnitines were elevated in PAH patients versus controls. Human RV long-chain FAs were increased and long-chain acylcarnitines were markedly reduced in PAH versus controls. With the use of proton magnetic resonance spectroscopy, in vivo myocardial triglyceride content was elevated in human PAH versus controls (1.4±1.3% triglyceride versus 0.22±0.11% triglyceride, P=0.02). Ceramide, a mediator of lipotoxicity, was increased in PAH RVs versus controls. Using an animal model of heritable PAH, we demonstrated reduced FA oxidation via failure of palmitoylcarnitine to stimulate oxygen consumption in the PAH RV. CONCLUSIONS: Abnormalities in FA metabolism can be detected in the blood and myocardium in human PAH and are associated with in vivo cardiac steatosis and lipotoxicity. Murine data suggest that lipotoxicity may arise from reduction in FA oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Triglicéridos/metabolismo , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología , Animales , Ceramidas/metabolismo , Estudios de Cohortes , Humanos , Hipertensión Pulmonar/epidemiología , Ratones , Ratones Transgénicos , Estudios Prospectivos , Disfunción Ventricular Derecha/epidemiología
2.
Am J Respir Crit Care Med ; 194(6): 719-28, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27077479

RESUMEN

RATIONALE: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. OBJECTIVES: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). METHODS: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. MEASUREMENTS AND MAIN RESULTS: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of (14)C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. CONCLUSIONS: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Ventrículos Cardíacos/química , Lípidos/análisis , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/fisiología , Línea Celular , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/ultraestructura , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Metabolismo de los Lípidos/genética , Metabolómica , Ratones , Ratones Transgénicos , Microscopía Electrónica , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA