Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Evol Biol ; 20(1): 114, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912143

RESUMEN

BACKGROUND: Understanding the structure and variability of adaptive loci such as the major histocompatibility complex (MHC) genes is a primary research goal for evolutionary and conservation genetics. Typically, classical MHC genes show high polymorphism and are under strong balancing selection, as their products trigger the adaptive immune response in vertebrates. Here, we assess the allelic diversity and patterns of selection for MHC class I and class II loci in a threatened shorebird with highly flexible mating and parental care behaviour, the Snowy Plover (Charadrius nivosus) across its broad geographic range. RESULTS: We determined the allelic and nucleotide diversity for MHC class I and class II genes using samples of 250 individuals from eight breeding population of Snowy Plovers. We found 40 alleles at MHC class I and six alleles at MHC class II, with individuals carrying two to seven different alleles (mean 3.70) at MHC class I and up to two alleles (mean 1.45) at MHC class II. Diversity was higher in the peptide-binding region, which suggests balancing selection. The MHC class I locus showed stronger signatures of both positive and negative selection than the MHC class II locus. Most alleles were present in more than one population. If present, private alleles generally occurred at very low frequencies in each population, except for the private alleles of MHC class I in one island population (Puerto Rico, lineage tenuirostris). CONCLUSION: Snowy Plovers exhibited an intermediate level of diversity at the MHC, similar to that reported in other Charadriiformes. The differences found in the patterns of selection between the class I and II loci are consistent with the hypothesis that different mechanisms shape the sequence evolution of MHC class I and class II genes. The rarity of private alleles across populations is consistent with high natal and breeding dispersal and the low genetic structure previously observed at neutral genetic markers in this species.


Asunto(s)
Charadriiformes , Genética de Población , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Selección Genética , Alelos , Animales , Charadriiformes/genética , Especies en Peligro de Extinción , Variación Genética , Filogenia
2.
Front Zool ; 16: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139233

RESUMEN

BACKGROUND: Marine and intertidal organisms face the rhythmic environmental changes induced by tides. The large amplitude of spring tides that occur around full and new moon may threaten nests of ground-nesting birds. These birds face a trade-off between ensuring nest safety from tidal flooding and nesting near the waterline to provide their newly hatched offspring with suitable foraging opportunities. The semi-lunar periodicity of spring tides may enable birds to schedule nest initiation adaptively, for example, by initiating nests around tidal peaks when the water line reaches the farthest into the intertidal habitat. We examined the impact of semi-lunar tidal changes on the phenology of nest flooding and nest initiation in Snowy Plovers (Charadrius nivosus) breeding at Bahía de Ceuta, a coastal wetland in Northwest Mexico. RESULTS: Using nest initiations and fates of 752 nests monitored over ten years we found that the laying season coincides with the lowest spring tides of the year and only 6% of all nests were flooded by tides. Tidal nest flooding varied substantially over time. First, flooding was the primary cause of nest failures in two of the ten seasons indicating high between-season stochasticity. Second, nests were flooded almost exclusively during the second half of the laying season. Third, nest flooding was associated with the semi-lunar spring tide cycle as nests initiated around spring tide had a lower risk of being flooded than nests initiated at other times. Following the spring tide rhythm, plovers appeared to adapt to this risk of flooding with nest initiation rates highest around spring tides and lowest around neap tides. CONCLUSIONS: Snowy Plovers appear generally well adapted to the risk of nest flooding by spring tides. Our results are in line with other studies showing that intertidal organisms have evolved adaptive responses to predictable rhythmic tidal changes but these adaptations do not prevent occasional catastrophic losses caused by stochastic events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA