Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 709-722.e13, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482084

RESUMEN

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.


Asunto(s)
Células Madre Adultas/metabolismo , Calcio/metabolismo , Ritmo Circadiano , Espacio Intracelular/metabolismo , Células-Madre Neurales/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Conducta Animal/efectos de los fármacos , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Citosol/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Melatonina/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Optogenética , Transducción de Señal/efectos de los fármacos , Triptaminas/farmacología
2.
Cell ; 181(6): 1189-1193, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32442404
3.
Genes Dev ; 38(3-4): 98-114, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38485267

RESUMEN

Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.


Asunto(s)
Mitocondrias , Orgánulos , Orgánulos/metabolismo , Mitocondrias/metabolismo , División Celular , Ribosomas/metabolismo , Diferenciación Celular
4.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518562

RESUMEN

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transducción de Señal , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Barrera Hematoencefálica , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Homeostasis , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
5.
Cell ; 153(3): 535-49, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622239

RESUMEN

Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Corteza Cerebral/citología , Proteínas de Unión al ADN , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Datos de Secuencia Molecular , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Activación Transcripcional
6.
Annu Rev Cell Dev Biol ; 30: 465-502, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000993

RESUMEN

Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.


Asunto(s)
Neocórtex/crecimiento & desarrollo , Neurogénesis/fisiología , Animales , División Celular Asimétrica , Compartimento Celular , Linaje de la Célula , Membrana Celular/fisiología , Núcleo Celular/fisiología , Polaridad Celular , Líquido Cefalorraquídeo/fisiología , Humanos , Uniones Intercelulares/fisiología , Ventrículos Laterales/embriología , Lípidos de la Membrana/metabolismo , Microglía/fisiología , Mitosis , Neocórtex/citología , Neocórtex/embriología , Células-Madre Neurales/clasificación , Células-Madre Neurales/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Neuronas/fisiología , Orgánulos/fisiología , Especificidad de la Especie
7.
J Biol Chem ; 300(2): 105648, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219816

RESUMEN

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Animales , Humanos , Ratas , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Ratones , Ratones Endogámicos C57BL
8.
EMBO J ; 40(21): e107532, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34549820

RESUMEN

Astrocytes regulate brain-wide functions and also show region-specific differences, but little is known about how general and region-specific functions are aligned at the single-cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA-2-mediated magnetic-activated cell sorting (MACS). Single-cell RNA-seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation-related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low-level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.


Asunto(s)
Astrocitos/metabolismo , Linaje de la Célula/genética , Diencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Proteína Smad4/genética , Animales , Astrocitos/clasificación , Astrocitos/citología , Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Ontología de Genes , Redes Reguladoras de Genes , Sustancia Gris/citología , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Anotación de Secuencia Molecular , Familia de Multigenes , Transducción de Señal , Proteína Smad4/metabolismo
9.
Nature ; 567(7746): 113-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787442

RESUMEN

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/embriología , Microtúbulos/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Uniones Intercelulares/metabolismo , Interfase , Ventrículos Laterales/anatomía & histología , Glándulas Mamarias Animales/citología , Ratones , Tamaño de los Órganos , Organoides/citología
10.
EMBO J ; 39(16): e103373, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32627867

RESUMEN

TMF1-regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self-renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane-less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co-regulates the architecture and function of these nuclear compartments in vitro and in the developing brain in vivo. Deletion of a highly conserved region in the N-terminal intrinsic disordered region abolishes the capacity of Trnp1 to regulate nucleoli and heterochromatin size, proliferation, and M-phase length; decreases the capacity to phase separate; and abrogates most of Trnp1 protein interactions. Thus, we identified Trnp1 as a novel regulator of several nuclear membrane-less compartments, a function important to maintain cells in a self-renewing proliferative state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/metabolismo , Membrana Nuclear/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Ratones , Membrana Nuclear/genética , Dominios Proteicos
11.
Nature ; 557(7705): 329-334, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769670

RESUMEN

The ability to repair or promote regeneration within the adult human brain has been envisioned for decades. Until recently, such efforts mainly involved delivery of growth factors and cell transplants designed to rescue or replace a specific population of neurons, and the results have largely been disappointing. New approaches using stem-cell-derived cell products and direct cell reprogramming have opened up the possibility of reconstructing neural circuits and achieving better repair. In this Review we briefly summarize the history of neural repair and then discuss these new therapeutic approaches, especially with respect to chronic neurodegenerative disorders.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Reprogramación Celular/fisiología , Regeneración Nerviosa/fisiología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Animales , Encéfalo/patología , Trasplante de Tejido Fetal , Humanos , Enfermedades Neurodegenerativas/fisiopatología , Trasplante de Células Madre
12.
Nature ; 561(7722): 253-257, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30177828

RESUMEN

Zika virus (ZIKV) has recently emerged as a global health concern owing to its widespread diffusion and its association with severe neurological symptoms and microcephaly in newborns1. However, the molecular mechanisms that are responsible for the pathogenicity of ZIKV remain largely unknown. Here we use human neural progenitor cells and the neuronal cell line SK-N-BE2 in an integrated proteomics approach to characterize the cellular responses to viral infection at the proteome and phosphoproteome level, and use affinity proteomics to identify cellular targets of ZIKV proteins. Using this approach, we identify 386 ZIKV-interacting proteins, ZIKV-specific and pan-flaviviral activities as well as host factors with known functions in neuronal development, retinal defects and infertility. Moreover, our analysis identified 1,216 phosphorylation sites that are specifically up- or downregulated after ZIKV infection, indicating profound modulation of fundamental signalling pathways such as AKT, MAPK-ERK and ATM-ATR and thereby providing mechanistic insights into the proliferation arrest elicited by ZIKV infection. Functionally, our integrative study identifies ZIKV host-dependency factors and provides a comprehensive framework for a system-level understanding of ZIKV-induced perturbations at the levels of proteins and cellular pathways.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Proteoma/análisis , Proteómica , Virus Zika/patogenicidad , Animales , Diferenciación Celular , Línea Celular , Chlorocebus aethiops , Interacciones Huésped-Patógeno/genética , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Fosfoproteínas/análisis , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mapas de Interacción de Proteínas , Proteoma/genética , Proteoma/metabolismo , ARN Interferente Pequeño/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus Zika/genética , Virus Zika/metabolismo
13.
Genes Dev ; 30(19): 2199-2212, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798843

RESUMEN

In order to understand whether early epigenetic mechanisms instruct the long-term behavior of neural stem cells (NSCs) and their progeny, we examined Uhrf1 (ubiquitin-like PHD ring finger-1; also known as Np95), as it is highly expressed in NSCs of the developing brain and rapidly down-regulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 lead to global DNA hypomethylation with a strong activation of the intracisternal A particle (IAP) family of endogenous retroviral elements, accompanied by an increase in 5-hydroxymethylcytosine. Down-regulation of Tet enzymes rescued the IAP activation in Uhrf1 conditional knockout (cKO) cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP up-regulation persists into postnatal stages in the Uhrf1 cKO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1 The high load of viral proteins and other transcriptional deregulation ultimately led to postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, they highlight how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiopatología , Genes de Partícula A Intracisternal/genética , Células-Madre Neurales/fisiología , Neurogénesis/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT , Supervivencia Celular/genética , Corteza Cerebral/embriología , Metilación de ADN , Eliminación de Gen , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/virología , Ubiquitina-Proteína Ligasas , Activación Viral/genética
14.
EMBO J ; 38(17): e100481, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31304985

RESUMEN

Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.


Asunto(s)
Plexo Coroideo/química , MicroARNs/genética , Células-Madre Neurales/citología , Adulto , Animales , Ciclo Celular , Diferenciación Celular , Movimiento Celular , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , MicroARNs/líquido cefalorraquídeo , Persona de Mediana Edad , Células-Madre Neurales/química , Nicho de Células Madre
15.
Mol Syst Biol ; 18(9): e11129, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36106915

RESUMEN

Despite the therapeutic promise of direct reprogramming, basic principles concerning fate erasure and the mechanisms to resolve cell identity conflicts remain unclear. To tackle these fundamental questions, we established a single-cell protocol for the simultaneous analysis of multiple cell fate conversion events based on combinatorial and traceable reprogramming factor expression: Collide-seq. Collide-seq revealed the lack of a common mechanism through which fibroblast-specific gene expression loss is initiated. Moreover, we found that the transcriptome of converting cells abruptly changes when a critical level of each reprogramming factor is attained, with higher or lower levels not contributing to major changes. By simultaneously inducing multiple competing reprogramming factors, we also found a deterministic system, in which titration of fates against each other yields dominant or colliding fates. By investigating one collision in detail, we show that reprogramming factors can disturb cell identity programs independent of their ability to bind their target genes. Taken together, Collide-seq has shed light on several fundamental principles of fate conversion that may aid in improving current reprogramming paradigms.


Asunto(s)
Reprogramación Celular , Fibroblastos , Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/metabolismo , Transcriptoma/genética
16.
Cell Mol Life Sci ; 79(5): 244, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35430697

RESUMEN

Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that comprises the glycoproteins tenascin-C (Tnc) and laminin-1 (LN1). In the present study, we investigated the function of these ECM glycoproteins in the adult stem cell niche. Adult neural stem/progenitor cells (aNSPCs) of the SEZ were prepared from wild type (Tnc+/+) and Tnc knockout (Tnc-/-) mice and analyzed using molecular and cell biological approaches. A delayed maturation of aNSPCs in Tnc-/- tissue was reflected by a reduced capacity to form neurospheres in response to epidermal growth factor (EGF). To examine a potential influence of the ECM on cell proliferation, aNSPCs of both genotypes were studied by cell tracking using digital video microscopy. aNSPCs were cultivated on three different substrates, namely, poly-D-lysine (PDL) and PDL replenished with either LN1 or Tnc for up to 6 days in vitro. On each of the three substrates aNSPCs displayed lineage trees that could be investigated with regard to cell cycle length. The latter appeared reduced in Tnc-/- aNSPCs on PDL and LN1 substrates, less so on Tnc that seemed to compensate the absence of the ECM compound to some extent. Close inspection of the lineage trees revealed a subpopulation of late dividing aNSPCslate that engaged into cycling after a notable delay. aNSPCslate exhibited a clearly different morphology, with a larger cell body and conspicuous processes. aNSPCslate reiterated the reduction in cell cycle length on all substrates tested, which was not rescued on Tnc substrates. When the migratory activity of aNSPC-derived progeny was determined, Tnc-/- neuroblasts displayed significantly longer migration tracks. This was traced to an increased rate of migration episodes compared to the wild-type cells that rested for longer time periods. We conclude that Tnc intervenes in the proliferation of aNSPCs and modulates the motility of neuroblasts in the niche of the SEZ.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Células Madre Adultas/metabolismo , Animales , División Celular , Matriz Extracelular/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Tenascina/genética , Tenascina/metabolismo
17.
Postepy Dermatol Alergol ; 40(5): 661-669, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38028417

RESUMEN

Introduction: The key to the correct diagnosis of shrimp allergy is a qualification to the most efficient diagnostic method and later interpretation of the result. To achieve this, it is necessary to apply a diagnostic strategy relevant to each patient's clinical situation and approach every case individually. Aim: In this study the allergen profile of shrimp-sensitized patients was analysed using ALEX2 Allergy Explorer. Material and methods: This study includes 50 adult patients with positive prick-by-prick tests with tiger shrimp bought from the local eco-market and an elevated concentration of IgE specific to the shrimp allergen extract (ImmunoCap). A total of 35 patients with negative skin prick tests with shrimp and not detectable sIgE shrimp in ImmunoCap were included in the control group. All patients had ALEX2 Allergy Explorer microarray test. Results: In the shrimp-sensitized group, 22 patients were sensitized to at least one allergen component of Penaeus monodon, 20 patients were sensitized to crab, and 20 were sensitized to lobster. Only 15 (30%) patients were sensitized to the Northern prawn (Pandalus borealis) allergen extract in ALEX2 and only 12 (24%) to Shrimp mix (Litopenaeus setiferus, Farfantepenaeus aztecus, Farfantepenaeus dourarum). Conclusions: Sensitization to shrimp tropomyosin in the research group was present only in 34% of cases. There may be other shrimp allergen components, not available in ALEX2, which are responsible for shrimp sensitization.

18.
Nature ; 539(7628): 248-253, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27783592

RESUMEN

The ability of the adult mammalian brain to compensate for neuronal loss caused by injury or disease is very limited. Transplantation aims to replace lost neurons, but the extent to which new neurons can integrate into existing circuits is unknown. Here, using chronic in vivo two-photon imaging, we show that embryonic neurons transplanted into the visual cortex of adult mice mature into bona fide pyramidal cells with selective pruning of basal dendrites, achieving adult-like densities of dendritic spines and axonal boutons within 4-8 weeks. Monosynaptic tracing experiments reveal that grafted neurons receive area-specific, afferent inputs matching those of pyramidal neurons in the normal visual cortex, including topographically organized geniculo-cortical connections. Furthermore, stimulus-selective responses refine over the course of many weeks and finally become indistinguishable from those of host neurons. Thus, grafted neurons can integrate with great specificity into neocortical circuits that normally never incorporate new neurons in the adult brain.


Asunto(s)
Embrión de Mamíferos/citología , Neocórtex/citología , Vías Nerviosas , Neuronas/fisiología , Neuronas/trasplante , Corteza Visual/citología , Vías Aferentes , Animales , Axones/metabolismo , Diferenciación Celular , Rastreo Celular , Espinas Dendríticas/metabolismo , Vías Eferentes , Ratones , Neocórtex/fisiología , Neuronas/citología , Terminales Presinápticos/metabolismo , Células Piramidales/citología , Células Piramidales/fisiología , Corteza Visual/fisiología
19.
Postepy Dermatol Alergol ; 39(5): 913-922, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36457677

RESUMEN

Introduction: SARS-CoV-2 is responsible for causing the COVID-19 disease, which affected 174 million people worldwide. After vaccines were launched, the focus was on their effectiveness and the degree of their safety. Aim: The authors try to find factors that may affect the response to vaccination. Material and methods: The study was conducted in 47 adults (39 women and 8 men; age: 47.3 ±11.2). Participants were vaccinated with two doses of the Comirnaty mRNA vaccine. Each patient had a medical history taken and the concentration of specific sIgG antibodies against S1 protein and SARS-CoV-2 N protein, as well as of selected cytokines (IL-8, TGF-ß, IFN-γ) was determined before and 3 weeks after the first and second dose of the vaccine. Results: There were 18 convalescents among the respondents. A statistically significant increase in the concentration of specific sIgG S1 in subsequent determinations was observed. Higher levels of sIgG S1 were found after the first dose of the vaccine in COVID-19 convalescents. There was no statistically significant influence of age, body mass index and sex on the increase in the concentration of antibodies and the concentration of the determined cytokines. It was shown that the higher the initial TGF-ß concentration, the greater the increase in sIgG S1 after administration of the vaccine. Conclusions: Vaccination did not increase the levels of IL-8, IFN-ß and TGF-γ. A higher concentration of serum TGF-ß before vaccination correlated with the higher concentration of sIgG S1 antibodies after the first dose of the vaccine.

20.
Glia ; 69(2): 346-361, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32809228

RESUMEN

Astrocyte heterogeneity is increasingly recognized, but still little is known about juxtavascular astrocytes with their somata directly adjacent to blood vessels, despite their importance after brain injury. As juxtavascular astrocytes originate from common progenitor cells, that is, have a clonal origin, they may intrinsically differ from other, non-juxtavascular astrocytes. To explore this, we examined the electrophysiological properties of these groups of astrocytes and the underlying ion channels. Using brain slices of BAC Aldh1l1-eGFP transgenic mice with astrocytes labeled by GFP expression, we compared juxtavascular and non-juxtavascular astrocytes in the somatosensory cortex by means of whole-cell patch-clamp recordings and immunohistochemical staining. Prior to injury, juxta- and non-juxtavascular astrocytes exhibit comparable electrophysiological properties with characteristic mostly passive conductance and a typical negative resting membrane potential. Immunohistochemical analysis of K+ channels showed that all astrocytes were Kir 4.1+ , but revealed an intriguing difference for Kv 4.3. The expression of Kv 4.3 in sibling astrocytes (non-juxtavascular, juxtavascular and pial) was dependent on their ontogenetic origin with lowest levels in juxtavascular astrocytes located in upper cortical layers. After traumatic brain injury (TBI), we found profound changes in the electrophysiological type of astrocytes with a predominance of non-passive properties and this pattern was significantly enriched in juxtavascular astrocytes. This was accompanied by pronounced down-regulation of Kir 4.1 in proliferating astrocytes, which was significantly more in juxtavascular compared to non-juxtavascular astrocytes. Taken together, TBI induces profound differences in electrophysiological properties between juxtavascular and non-juxtavascular astrocytes that might be related to the preponderance of juxtavascular astrocyte proliferation.


Asunto(s)
Astrocitos , Lesiones Encefálicas , Animales , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA