Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Appl Environ Microbiol ; 79(20): 6196-206, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913425

RESUMEN

Photobioreactors (PBRs) are very attractive for sunlight-driven production of biofuels and capturing of anthropogenic CO2. One major problem associated with PBRs however, is that the bacteria usually associated with microalgae in nonaxenic cultures can lead to biofouling and thereby affect algal productivity. Here, we report on a phylogenetic, metagenome, and functional analysis of a mixed-species bacterial biofilm associated with the microalgae Chlorella vulgaris and Scenedesmus obliquus in a PBR. The biofilm diversity and population dynamics were examined through 16S rRNA phylogeny. Overall, the diversity was rather limited, with approximately 30 bacterial species associated with the algae. The majority of the observed microorganisms were affiliated with Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes. A combined approach of sequencing via GS FLX Titanium from Roche and HiSeq 2000 from Illumina resulted in the overall production of 350 Mbp of sequenced DNA, 165 Mbp of which was assembled in larger contigs with a maximum size of 0.2 Mbp. A KEGG pathway analysis suggested high metabolic diversity with respect to the use of polymers and aromatic and nonaromatic compounds. Genes associated with the biosynthesis of essential B vitamins were highly redundant and functional. Moreover, a relatively high number of predicted and functional lipase and esterase genes indicated that the alga-associated bacteria are possibly a major sink for lipids and fatty acids produced by the microalgae. This is the first metagenome study of microalga- and PBR-associated biofilm bacteria, and it gives new clues for improved biofuel production in PBRs.


Asunto(s)
Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Biopelículas/crecimiento & desarrollo , Microalgas/fisiología , Interacciones Microbianas , Fotobiorreactores/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microalgas/crecimiento & desarrollo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Anim Microbiome ; 5(1): 45, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735458

RESUMEN

Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.

3.
Environ Microbiol Rep ; 12(4): 396-405, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32338395

RESUMEN

A new autotrophic hydrogen-oxidizing Chromatiaceae bacterium, namely bacterium CTD079, was enriched from a water column sample at 1500 m water depth in the southern Pacific Ocean. Based on the phylogeny of 16S rRNA genes, it was closely related to a scaly snail endosymbiont (99.2% DNA sequence identity) whose host so far is only known to colonize hydrothermal vents along the Indian ridge. The average nucleotide identity between the genomes of CTD079 and the snail endosymbiont was 91%. The observed differences likely reflect adaptations to their specific habitats. For example, CTD079 encodes additional enzymes like the formate dehydrogenase increasing the organism's spectrum of energy generation pathways. Other additional physiological features of CTD079 included the increase of viral defence strategies, secretion systems and specific transporters for essential elements. These important genome characteristics suggest an adaptation to life in the open ocean.


Asunto(s)
Bacterias/metabolismo , Hidrógeno/metabolismo , Agua de Mar/microbiología , Caracoles/microbiología , Animales , Procesos Autotróficos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Respiraderos Hidrotermales/microbiología , Oxidación-Reducción , Filogenia , Caracoles/fisiología , Simbiosis
4.
J Insect Physiol ; 126: 104092, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763248

RESUMEN

Various insects that utilize vitamin-deficient diets derive a supplementary supply of these micronutrients from their symbiotic microorganisms. Here, we tested the inference from genome annotation that the symbiotic bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum provides the insect with vitamins B2 and B5 but no other B-vitamins. Contrary to expectation, aphid survival over five days of larval development on artificial diets individually lacking each B-vitamin not synthesized by Buchnera was not significantly reduced, despite significantly lower carcass B1, B3, B6 and B7 concentrations in the aphids on diets lacking each of these B-vitamins than on the vitamin-complete diet. Aphid survival was, however, significantly reduced on diet containing low concentrations (≤0.2 mM) or no pantothenate (B5). Complementary transcriptome analysis revealed low abundance of the sense-transcript, but high abundance of the antisense transcript, of the Buchnera gene panC encoding the enzyme mediating the terminal reaction in pantothenate synthesis. We hypothesize that metabolic constraints or antisense transcripts may reduce Buchnera-mediated production of pantothenate, resulting in poor aphid performance on pantothenate-free diets. The discrepancy between predictions from genome data and empirical data illustrates the need for physiological study to test functional inferences made from genome annotations.


Asunto(s)
Áfidos , Buchnera/metabolismo , Simbiosis/fisiología , Complejo Vitamínico B/metabolismo , Animales , Áfidos/metabolismo , Áfidos/microbiología , Buchnera/genética , Perfilación de la Expresión Génica , Genes Bacterianos , Genoma Bacteriano , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Complejo Vitamínico B/genética
5.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203753

RESUMEN

All multicellular organisms are associated with microbial communities, ultimately forming a metaorganism. Several studies conducted on well-established model organisms point to immunological, metabolic, and behavioral benefits of the associated microbiota for the host. Consequently, a microbiome can influence the physiology of a host; moreover, microbial community shifts can affect host health and fitness. The present study aimed to evaluate the significance and functional role of the native microbiota for life cycle transitions and fitness of the cnidarian moon jellyfish Aurelia aurita A comprehensive host fitness experiment was conducted studying the polyp life stage and integrating 12 combinations of treatments with microbiota modification (sterile conditions, foreign food bacteria, and potential pathogens). Asexual reproduction, e.g., generation of daughter polyps, and the formation and release of ephyrae were highly affected in the absence of the native microbiota, ultimately resulting in a halt of strobilation and ephyra release. Assessment of further fitness traits showed that health, growth, and feeding rate were decreased in the absence and upon community changes of the native microbiota, e.g., when challenged with selected bacteria. Moreover, changes in microbial community patterns were detected by 16S rRNA amplicon sequencing during the course of the experiment. This demonstrated that six operational taxonomic units (OTUs) significantly correlated and explained up to 97% of fitness data variability, strongly supporting the association of impaired fitness with the absence/presence of specific bacteria. Conclusively, our study provides new insights into the importance and function of the microbiome for asexual reproduction, health, and fitness of the basal metazoan A. auritaIMPORTANCE All multicellular organisms are associated with a diverse and specific community of microorganisms; consequently, the microbiome is of fundamental importance for health and fitness of the multicellular host. However, studies on microbiome contribution to host fitness are in their infancy, in particular, for less well-established hosts such as the moon jellyfish Aurelia aurita Here, we studied the impact of the native microbiome on the asexual reproduction and on further fitness traits (health, growth, and feeding) of the basal metazoan due to induced changes in its microbiome. We observed significant impact on all fitness traits analyzed, in particular, in the absence of the protective microbial shield and when challenged with marine potentially pathogenic bacterial isolates. Notable is the identified crucial importance of the native microbiome for the generation of offspring, consequently affecting life cycle decisions. Thus, we conclude that the microbiome is essential for the maintenance of a healthy metaorganism.


Asunto(s)
Microbiota , Escifozoos/crecimiento & desarrollo , Escifozoos/microbiología , Animales , Estadios del Ciclo de Vida , ARN Ribosómico 16S/genética , Reproducción Asexuada , Escifozoos/genética , Escifozoos/fisiología
6.
Microb Biotechnol ; 12(2): 305-323, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30381904

RESUMEN

Ammonia caused disturbance of biogas production is one of the most frequent incidents in regular operation of biogas reactors. This study provides a detailed insight into the microbial community of a mesophilic, full-scale biogas reactor (477 kWh h-1 ) fed with maize silage, dried poultry manure and cow manure undergoing initial process disturbance by increased ammonia concentration. Over a time period of 587 days, the microbial community of the reactor was regularly monitored on a monthly basis by high-throughput amplicon sequencing of the archaeal and bacterial 16S rRNA genes. During this sampling period, the total ammonia concentrations varied between 2.7 and 5.8 g l-1 [NH4 + -N]. To gain further inside into the active metabolic pathways, for selected time points metatranscriptomic shotgun analysis was performed allowing the quantification of marker genes for methanogenesis, hydrolysis and syntrophic interactions. The results obtained demonstrated a microbial community typical for a mesophilic biogas plant. However in response to the observed changing process conditions (e.g. increasing NH4 + levels, changing feedstock composition), the microbial community reacted highly flexible by changing and adapting the community composition. The Methanosarcina-dominated archaeal community was shifted to a Methanomicrobiales-dominated archaeal community in the presence of increased ammonia conditions. A similar trend as in the phylogenetic composition was observed in the transcription activity of genes coding for enzymes involved in acetoclastic methanogenesis and syntrophic acetate oxidations (Codh/Acs and Fthfs). In accordance, Clostridia simultaneously increased under elevated ammonia concentrations in abundance and were identified as the primary syntrophic interaction partner with the now Methanomicrobiales-dominated archaeal community. In conclusion, overall stable process performance was maintained during increased ammonia concentration in the studied reactor based on the microbial communities' ability to flexibly respond by reorganizing the community composition while remaining functionally stable.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Bacterias/clasificación , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Microbiota , Transcripción Genética , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , Medios de Cultivo/química , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Estudios Longitudinales , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Front Microbiol ; 7: 1297, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27602022

RESUMEN

The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis. This finding, previously shown for Bacteria, was as well observed for the archaeal domain.

8.
Front Microbiol ; 7: 1332, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27610105

RESUMEN

Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica's prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes.

9.
Biotechnol Biofuels ; 9: 121, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27279900

RESUMEN

BACKGROUND: The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood. RESULTS: In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affiliated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an equal distribution of these enzymes was observed in the elephant feces sample. CONCLUSIONS: Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bacteroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibrobacteres in biogas fermenters will most likely result in an increased hydrolytic performance.

10.
Front Microbiol ; 7: 1858, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917168

RESUMEN

Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades.

11.
FEMS Microbiol Ecol ; 87(2): 378-89, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24111503

RESUMEN

Despite their importance for ecosystem functioning, little is known about the composition of active marine bacterioplankton communities. Hence, this study was focused on assessing the diversity of these communities in the southern North Sea and examining the impact of a phytoplankton spring bloom on the ambient bacterioplankton community. Community composition in and outside the bloom was assessed in 14 samples by pyrosequencing-based analysis of 16S rRNA gene amplicons generated from environmental RNA. The data set comprised of 211 769 16S rRNA gene sequences. Proteobacteria were the predominant phylogenetic group with Alphaproteobacteria and Gammaproteobacteria as the most abundant classes. Actinobacteria and Bacteroidetes were identified in minor abundances. Active bacterial communities were dominated by few lineages such as the Roseobacter RCA cluster and the SAR92 clade. Community structures of three selected samples were also assessed by direct sequencing of cDNA generated from rRNA-depleted environmental RNA. Generated data sets comprised of 988 202 sequences. Taxonomic assignment of the reads confirmed the predominance of Proteobacteria. The examined phytoplankton spring bloom affected the bacterioplankton community structures significantly. Bacterial richness was reduced in the bloom area, and the abundance of certain bacterial groups was affected by bloom presence. The SAR92 clade and the Roseobacter RCA cluster were significantly more abundant and active in the bloom. Functions affected by the bloom include photosynthesis, protein metabolism, and DNA metabolism.


Asunto(s)
Bacterias/clasificación , Fitoplancton/clasificación , Agua de Mar/microbiología , Bacterias/genética , Biodiversidad , Perfilación de la Expresión Génica , Genes de ARNr , Datos de Secuencia Molecular , Mar del Norte , Filogenia , Fitoplancton/genética , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
12.
PLoS One ; 9(9): e106707, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25208077

RESUMEN

A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs) were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH) genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs), which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.


Asunto(s)
Lactancia Materna , Elefantes/microbiología , Heces/microbiología , Glicósido Hidrolasas/metabolismo , Metagenómica , Microbiota , Plantas , Animales , Biomasa , Recolección de Datos , Femenino , Glicósido Hidrolasas/genética , Masculino , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA