Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 30(2): e17167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348640

RESUMEN

Land use intensification favours particular trophic groups which can induce architectural changes in food webs. These changes can impact ecosystem functions, services, stability and resilience. However, the imprint of land management intensity on food-web architecture has rarely been characterized across large spatial extent and various land uses. We investigated the influence of land management intensity on six facets of food-web architecture, namely apex and basal species proportions, connectance, omnivory, trophic chain lengths and compartmentalization, for 67,051 European terrestrial vertebrate communities. We also assessed the dependency of this influence of intensification on land use and climate. In addition to more commonly considered climatic factors, the architecture of food webs was notably influenced by land use and management intensity. Intensification tended to strongly lower the proportion of apex predators consistently across contexts. In general, intensification also tended to lower proportions of basal species, favoured mesopredators, decreased food webs compartmentalization whereas it increased their connectance. However, the response of food webs to intensification was different for some contexts. Intensification sharply decreased connectance in Mediterranean and Alpine settlements, and it increased basal tetrapod proportions and compartmentalization in Mediterranean forest and Atlantic croplands. Besides, intensive urbanization especially favoured longer trophic chains and lower omnivory. By favouring mesopredators in most contexts, intensification could undermine basal tetrapods, the cascading effects of which need to be assessed. Our results support the importance of protecting top predators where possible and raise questions about the long-term stability of food webs in the face of human-induced pressures.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Humanos , Vertebrados/fisiología , Bosques , Clima
2.
Ecol Lett ; 26(4): 504-515, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36740842

RESUMEN

Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non-endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non-endemic species as functionally equivalent in island biogeography is not fundamentally wrong.


Asunto(s)
Clima , Plantas , Fenotipo , Hojas de la Planta , España , Islas
3.
Ecol Lett ; 26(8): 1452-1465, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37322850

RESUMEN

Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.


Asunto(s)
Biodiversidad , Ecosistema , Crecimiento Demográfico , Fenotipo
4.
Proc Biol Sci ; 289(1967): 20211694, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35042423

RESUMEN

Despite evidence of a positive effect of functional diversity on ecosystem productivity, the importance of functionally distinct species (i.e. species that display an original combination of traits) is poorly understood. To investigate how distinct species affect ecosystem productivity, we used a forest-gap model to simulate realistic temperate forest successions along an environmental gradient and measured ecosystem productivity at the end of the successional trajectories. We performed 10 560 simulations with different sets and numbers of species, bearing either distinct or indistinct functional traits, and compared them to random assemblages, to mimic the consequences of a regional loss of species. Long-term ecosystem productivity dropped when distinct species were lost first from the regional pool of species, under the harshest environmental conditions. On the contrary, productivity was more dependent on ordinary species in milder environments. Our findings show that species functional distinctiveness, integrating multiple trait dimensions, can capture species-specific effects on ecosystem productivity. In a context of an environmentally changing world, they highlight the need to investigate the role of distinct species in sustaining ecosystem processes, particularly in extreme environmental conditions.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Ambientes Extremos , Bosques
5.
Ecol Appl ; 31(8): e02438, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34374163

RESUMEN

Species responses to climate change depend on environment, genetics, and interactions among these factors. Intraspecific cytotype (ploidy level) variation is a common type of genetic variation in many species. However, the importance of intraspecific cytotype variation in determining demography across environments is poorly known. We studied quaking aspen (Populus tremuloides), which occurs in diploid and triploid cytotypes. This widespread tree species is experiencing contractions in its western range, which could potentially be linked to cytotype-dependent drought tolerance. We found that interactions between cytotype and environment drive mortality and recruitment across 503 plots in Colorado. Triploids were more vulnerable to mortality relative to diploids and had reduced recruitment on more drought-prone and disturbed plots relative to diploids. Furthermore, there was substantial genotype-dependent variation in demography. Thus, cytotype and genotype variation are associated with decline in this foundation species. Future assessment of demographic responses to climate change will benefit from knowledge of how genetic and environmental mosaics interact to determine species' ecophysiology and demography.


Asunto(s)
Populus , Colorado , Sequías , Genotipo , Populus/genética , Árboles
7.
Glob Chang Biol ; 23(6): 2218-2229, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27626183

RESUMEN

The spatial tracking of climatic shifts is frequently reported as a biodiversity response to climatic change. However, species' range shifts are often idiosyncratic and inconsistent with climatic shift predictions. At the community scale, this discrepancy can be measured by comparing the spatial shift in the relative composition of cold- vs. warm-adapted species in a local assemblage [the community temperature index (CTI)] with the spatial shift in temperature isotherms. While the local distribution of climate change velocity is a promising approach to downscaling climate change pressure and responses, CTI velocity has only been investigated on a continental or national scale. In this study, we coupled French Breeding Bird Survey data, collected from 2133 sites monitored between 2001 and 2012, with climatic data in order to estimate the local magnitude and direction of breeding season temperature shift, CTI shift, and their spatiotemporal divergence - the local climatic debt. We also tested whether landscape characteristics that are known to affect climate velocity and spatial tracking of climate change mediated the climatic debt on the local scale. We found a clear spatial structure, together with heterogeneity in both temperature and CTI spatial shifts. Local climatic debt decreased as the elevation, habitat diversity, and the naturalness of the landscape increased. These results suggest the complementary effects of the local topographic patterns sheltering more diverse microclimates and the increasing permeability of natural and diversified landscape. Our findings suggest that a more nuanced evaluation of spatial variability in climatic and biotic shifts is necessary in order to properly describe biodiversity responses to climate change rather than the oversimplified descriptions of uniform poleward shifts.


Asunto(s)
Biodiversidad , Aves , Cambio Climático , Ecosistema , Animales , Estaciones del Año
8.
Oecologia ; 185(4): 737-748, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29058124

RESUMEN

Global changes are modifying the structure of species assemblages, but the generality of resulting diversity patterns and of their drivers is poorly understood. Any such changes can be detected and explained by comparing temporal trends in taxonomic and functional diversity over broad spatial extents. In this study, we addressed three complementary questions: How did bird taxonomic and functional diversity change over the past 40 years in the conterminous United States? Are these trends non-linear? Can temporal variations in functional diversity be explained by broad-scale changes in climate and vegetation productivity? We quantified changes in taxonomic and functional diversity for 807 bird assemblages over the past four decades (1970-2011) considering a suite of 16 ecological traits for 435 species. We found increases in local bird species richness and taxonomic equitability that plateaued in the early 2000's while total abundance declined over the whole period. Functional richness, the total range of traits in an assemblage, increased due to the rising prevalence of species with atypical life-history strategies and under-represented habitat or trophic preferences. However, these species did not trigger major changes in the functional composition of bird assemblages. Inter-annual variations in climate and primary productivity explained the richness of bird life-history traits in local assemblages, suggesting that these traits are influenced by broad-scale environmental factors, while others respond more to more local drivers. Our results highlight that a comparative analysis of the multiple facets of functional diversity can raise novel insights on processes underlying temporal trends in biodiversity.


Asunto(s)
Biodiversidad , Aves/clasificación , Aves/fisiología , Animales , Clima , Factores de Tiempo , Estados Unidos
9.
Glob Chang Biol ; 21(9): 3367-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25731935

RESUMEN

The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate-induced adjustment of communities on Grinnellian (habitat-related) and Eltonian (function-related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving-window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine-scale and short-term adjustment of community composition to temperature changes. Moreover, significant temperature variations seem to be responsible for both the Grinnellian and Eltonian aspects of functional homogenization.


Asunto(s)
Biodiversidad , Aves/fisiología , Cambio Climático , Clima , Animales , Francia , Dinámica Poblacional , Estaciones del Año , Temperatura
10.
J Biogeogr ; 51(1): 89-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38515765

RESUMEN

The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored. It is also not well understood how widely used approaches to assess or project the responses of species to changing environmental conditions can deal with time lags. It, therefore, remains unclear to what extent time lags in species distributions are accounted for in biodiversity assessments, scenarios and models; this has ramifications for policymaking and conservation science alike. This perspective piece reflects on lagged species responses to environmental change and discusses the potential consequences for species distribution models (SDMs), the tools of choice in biodiversity modelling. We suggest ways to better account for time lags in calibrating these models and to reduce their leverage effects in projections for improved biodiversity science and policy.

11.
Curr Biol ; 33(23): 5263-5271.e3, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37992717

RESUMEN

Identifying areas that contain species assemblages not found elsewhere in a region is central to conservation planning.1,2 Species assemblages contain networks of species interactions that underpin species dynamics,3,4 ecosystem processes, and contributions to people.5,6,7 Yet the uniqueness of interaction networks in a regional context has rarely been assessed. Here, we estimated the spatial uniqueness of 10,000 terrestrial vertebrate trophic networks across Europe (1,164 species, 50,408 potential interactions8) based on the amount of similarity between all local networks mapped at a 10 km resolution. Our results revealed more unique networks in the Arctic bioregion, but also in southern Europe and isolated islands. We then contrasted the uniqueness of trophic networks with their vulnerability to human footprint and future climate change and measured their coverage within protected areas. This analysis revealed that unique networks situated in southern Europe were particularly exposed to human footprint and that unique networks in the Arctic might be at risk from future climate change. However, considering interaction networks at the level of trophic groups, rather than species, revealed that the general structure of trophic networks was redundant across the continent, in contrast to species' interactions. We argue that proactive European conservation strategies might gain relevance by turning their eyes toward interaction networks that are both unique and vulnerable.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Europa (Continente) , Vertebrados
12.
Curr Biol ; 32(9): 2093-2100.e3, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35334226

RESUMEN

Taxonomic, functional, and phylogenetic diversities are important facets of biodiversity. Studying them together has improved our understanding of community dynamics, ecosystem functioning, and conservation values.1-3 In contrast to species, traits, and phylogenies, the diversity of biotic interactions has so far been largely ignored as a biodiversity facet in large-scale studies. This neglect represents a crucial shortfall because biotic interactions shape community dynamics, drive important aspects of ecosystem functioning,4-7 provide services to humans, and have intrinsic conservation value.8,9 Hence, the diversity of interactions can provide crucial and unique information with respect to other diversity facets. Here, we leveraged large datasets of trophic interactions, functional traits, phylogenies, and spatial distributions of >1,000 terrestrial vertebrate species across Europe at a 10-km resolution. We computed the diversity of interactions (interaction diversity [ID]) in addition to functional diversity (FD) and phylogenetic diversity (PD). After controlling for species richness, surplus and deficits of ID were neither correlated with FD nor with PD, thus representing unique and complementary information to the commonly studied facets of diversity. A three-dimensional mapping allowed for visualizing different combinations of ID-FD-PD simultaneously. Interestingly, the spatial distribution of these diversity combinations closely matched the boundaries between 10 European biogeographic regions and revealed new interaction-rich areas in the European Boreal region and interaction-poor areas in Central Europe. Our study demonstrates that the diversity of interactions adds new and ecologically relevant information to multifacetted, large-scale diversity studies with implications for understanding eco-evolutionary processes and informing conservation planning.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Evolución Biológica , Humanos , Filogenia , Vertebrados
13.
Water Res ; 204: 117587, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482096

RESUMEN

Ecosystem degradation and biodiversity loss have been caused by economic booms in developing countries over recent decades. In response, ecosystem restoration projects have been advanced in some countries but the effectiveness of different approaches and indicators at large spatio-temporal scales (i.e., whole catchments) remains poorly understood. This study assessed the effectiveness of a diverse array of 440 aquatic restoration projects including wastewater treatment, constructed wetlands, plant/algae salvage and dredging of contaminated sediments implemented and maintained from 2007 to 2017 across more than 2000 km2 of the northwest Taihu basin (Yixing, China). Synchronized investigations of water quality and invertebrate communities were conducted before and after restoration. Our analysis showed that even though there was rapid urbanization at this time, nutrient concentrations (NH4+-N, TN, TP) and biological indices of benthic invertebrate (taxonomic richness, Shannon diversity, sensitive taxon density) improved significantly across most of the study area. Improvements were associated with the type of restoration project, with projects targeting pollution-sources leading to the clearest ecosystem responses compared with those remediating pollution sinks. However, in some locations, the recovery of biotic communities appears to lag behind nutrients (e.g., nitrogen and phosphorus), likely reflecting long-distance re-colonization routes for invertebrates given the level of pre-restoration degradation of the catchment. Overall, the study suggests that ecological damage caused by recent rapid economic development in China could potentially be mitigated by massive restoration investments synchronized across whole catchments, although these effects could be expected to be enhanced if urbanization rates were reduced at the same time.


Asunto(s)
Ecosistema , Urbanización , Animales , Biodiversidad , Monitoreo del Ambiente , Invertebrados , Ríos , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA