Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 110(3): 531-547, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809767

RESUMEN

Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.


Asunto(s)
Disautonomía Familiar , Enfermedades Neurodegenerativas , Degeneración Retiniana , Ratones , Animales , Disautonomía Familiar/genética , Cinetina , Ataxia de la Marcha , Administración Oral
2.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30905397

RESUMEN

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Asunto(s)
Disautonomía Familiar/terapia , Cinetina/uso terapéutico , Propiocepción , Empalme del ARN , Factores de Elongación Transcripcional/genética , Alelos , Animales , Conducta Animal , Línea Celular , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Exones , Fibroblastos , Genotipo , Humanos , Intrones , Cinetina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Fenotipo
3.
Nat Commun ; 12(1): 3332, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099697

RESUMEN

Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.


Asunto(s)
Aprendizaje Profundo , Marcación de Gen/métodos , Empalme del ARN , Animales , Biología Computacional , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exones , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Homólogo 1 de la Proteína MutL/genética , Mutación , Fenetilaminas/administración & dosificación , Piridazinas/administración & dosificación , Esterol Esterasa/genética , Transcriptoma , Proteínas tau/genética
4.
Nat Commun ; 12(1): 7299, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911927

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin (HTT) gene. Consequently, the mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin (HTT) protein levels alleviates motor and neuropathological abnormalities. Investigational drugs aim to reduce HTT levels by repressing HTT transcription, stability or translation. These drugs require invasive procedures to reach the central nervous system (CNS) and do not achieve broad CNS distribution. Here, we describe the identification of orally bioavailable small molecules with broad distribution throughout the CNS, which lower HTT expression consistently throughout the CNS and periphery through selective modulation of pre-messenger RNA splicing. These compounds act by promoting the inclusion of a pseudoexon containing a premature termination codon (stop-codon psiExon), leading to HTT mRNA degradation and reduction of HTT levels.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Empalme del ARN , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Empalme del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , Expansión de Repetición de Trinucleótido/efectos de los fármacos
5.
J Clin Invest ; 129(11): 4817-4831, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589162

RESUMEN

BACKGROUNDSpinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein. New SMN-enhancing therapeutics are associated with variable clinical benefits. Limited knowledge of baseline and drug-induced SMN levels in disease-relevant tissues hinders efforts to optimize these treatments.METHODSSMN mRNA and protein levels were quantified in human tissues isolated during expedited autopsies.RESULTSSMN protein expression varied broadly among prenatal control spinal cord samples, but was restricted at relatively low levels in controls and SMA patients after 3 months of life. A 2.3-fold perinatal decrease in median SMN protein levels was not paralleled by comparable changes in SMN mRNA. In tissues isolated from nusinersen-treated SMA patients, antisense oligonucleotide (ASO) concentration and full-length (exon 7 including) SMN2 (SMN2-FL) mRNA level increases were highest in lumbar and thoracic spinal cord. An increased number of cells showed SMN immunolabeling in spinal cord of treated patients, but was not associated with an increase in whole-tissue SMN protein levels.CONCLUSIONSA normally occurring perinatal decrease in whole-tissue SMN protein levels supports efforts to initiate SMN-inducing therapies as soon after birth as possible. Limited ASO distribution to rostral spinal and brain regions in some patients likely limits clinical response of motor units in these regions for those patients. These results have important implications for optimizing treatment of SMA patients and warrant further investigations to enhance bioavailability of intrathecally administered ASOs.FUNDINGSMA Foundation, SMART, NIH (R01-NS096770, R01-NS062869), Ionis Pharmaceuticals, and PTC Therapeutics. Biogen provided support for absolute real-time RT-PCR.


Asunto(s)
Envejecimiento , Neuronas Motoras , Atrofia Muscular Espinal , Oligodesoxirribonucleótidos Antisentido/administración & dosificación , Médula Espinal , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Autopsia , Supervivencia Celular , Femenino , Humanos , Masculino , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 2 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
6.
J Med Chem ; 59(13): 6070-85, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27299569

RESUMEN

The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure-activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the SMN2 exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds 9, 14, and 20, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Atrofia Muscular Espinal/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Descubrimiento de Drogas , Exones/efectos de los fármacos , Células HEK293 , Humanos , Ratones Noqueados , Atrofia Muscular Espinal/genética , ARN Mensajero/genética , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad , Proteína 2 para la Supervivencia de la Neurona Motora/genética
7.
Science ; 345(6197): 688-93, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25104390

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Cumarinas/administración & dosificación , Isocumarinas/administración & dosificación , Longevidad/efectos de los fármacos , Atrofia Muscular Espinal/tratamiento farmacológico , Pirimidinonas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Administración Oral , Animales , Células Cultivadas , Cumarinas/química , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Isocumarinas/química , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Pirimidinonas/química , ARN Mensajero/genética , Eliminación de Secuencia , Bibliotecas de Moléculas Pequeñas/química , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA