Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 196(2): 1460-1474, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820143

RESUMEN

ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type and light signaling mutants under light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 and PIN-FORMED 2 mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding reduced residual arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b-(RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signaling and other miRNA-mediated pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , MicroARNs , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Mutación/genética , Fenotipo
2.
Biochem Biophys Res Commun ; 589: 204-208, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34922204

RESUMEN

microRNA encoded peptide (miPEP) has been shown to have potential to regulate corresponding miRNA and associated function. miPEP858a regulate phenylpropanoid pathway and plant development. Several studies have suggested that various factors like light, temperature, heavy metals etc. can regulate gene and their associated functions. However, what are the regulators of miPEP are not reported till date. In this study we have reported that light directly regulates miPEP858a accumulation in Arabidopsis thaliana. Peptide assay in light and dark clearly showed the essential requirement of light. Along with this, we have reported that HY5 a shoot-to-root mobile, light-mediated transcription factor plays a crucial role in the function of miPEP858a. The transcript and endogenous protein accumulation of miPEP858a in hy5-215, OXHY5/hy5, and cop1-4 suggested that the HY5 positively regulates miPEP858a. In addition to that this study also include grafting assay between shoot of different mutant and transgenic lines with root of miPEP858a promoter:reporter lines and promoter deletion construct experiment clearly suggested that HY5 a transcription factor regulates light-dependent expression and accumulation of miPEP858a.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Luz , MicroARNs , Péptidos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Péptidos/química , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Biochem Biophys Res Commun ; 605: 51-55, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35316763

RESUMEN

microRNAs (miRNAs) regulate target gene expression by pairing to target mRNAs, leading to mRNA degradation or translation inhibition. Out of several miRNAs in Arabidopsis, miR397b and miR857 regulate secondary growth by modulating lignin polymerization and deposition in secondary xylem cells by targeting laccases. Interestingly, the phytohormone ethylene is also suggested to have a role in lignin biosynthesis in tension wood formation. Despite this information, it is not known whether ethylene has any role in controlling secondary growth via miRNAs-mediated pathways. In this study, we elucidate that ethylene acts upstream to the miR397b/miR857-laccases module and negatively regulates lignin biosynthesis by directly activating the expression of both the miRNAs. The binding of EIN3 to the promoter of miR397b is further validated by yeast one-hybrid assay. In addition to its role in lignification, ethylene also regulates leaf serration by directly regulating the expression of NAC transcription factors, like CUP-SHAPED COTYLEDON2 (CUC2) and CUC3. Together, our study suggests a novel mechanism involving ethylene and miRNAs in lignin biosynthesis and leaf serration in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/metabolismo
5.
Plant Cell Physiol ; 59(10): 2099-2112, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010959

RESUMEN

Plants are continuously exposed to a myriad of stresses, which lead to the formation of secondary metabolites including flavonoids. Studies suggest that low temperature exposure leads to enhanced flavonoid accumulation in Arabidopsis thaliana. In addition, flavonoid biosynthesis is regulated by light through various regulatory factors. Therefore, plants may possess the capability to integrate light and low temperature signals for survival under freezing conditions. However, the detailed molecular mechanism and the regulatory factors associated with light- and low temperature- responsive flavonoid biosynthesis remain largely unknown. Here, we report a strict requirement for light for the low temperature-enhanced flavonol biosynthesis. Low temperature-induced expression of biosynthetic genes as well as flavonol accumulation was hampered in ELONGATED HYPOCOTYL (hy5) and myb11myb111myb12 triple mutants as compared with the wild type in Arabidopsis. Overexpression of AtHY5 in the hy5 mutant restored induction of gene expression and flavonol accumulation in response to low temperature in light. Metabolite and gene expression analysis also suggests a negative role for CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in accumulation of flavonols in response to low temperature. Overexpression of AtMYB12 enhanced accumulation of flavonols under low temperature in a light-dependent manner. Together, our analysis suggests the requirement for HY5 and flavonol-specific MYB regulatory factors for low temperature-induced flavonol synthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonoles/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/metabolismo , Hipocótilo/fisiología , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Hazard Mater ; 465: 133100, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38042003

RESUMEN

Non-essential heavy metal cadmium (Cd) is toxic to plants and animals. Cadmium affects plant photosynthesis, respiration, and causes water imbalance and may lead to plant death. Cadmium induces toxicity by interfering with the essential metal copper (Cu) homeostasis, which affects plant nutrition. Though root lignin biosynthesis is positively regulated by Cd stress, the underlying mechanisms promoting lignin accumulation and controlling Cd-induced Cu limitation responses are unclear. Here, we elucidated the role of Cu-responsive microRNA (miR397b) in Arabidopsis thaliana plants for Cd stress by targeting the LACCASE2 (LAC2) gene. This study demonstrated the fundamental mechanism of miR397b-mediated Cd stress response by enhancing the lignin content in root tissues. We developed miR397b over-expressing plants, which showed considerable Cd stress tolerance. Plants with knockdown function of LAC2 also showed significant tolerance to Cd stress. miR397b overexpressing and lac2 mutant plants showed root reduction, higher biomass and chlorophyll content, and significantly lower Reactive Oxygen Species (ROS). This study demonstrated the miR397b-mediated Cd stress response in Arabidopsis by enhancing the lignin content in root tissues. We conclude that modulation in miR397b can be potentially used for improving plants for Cd tolerance and Cu homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cadmio/metabolismo , Cobre , Lignina , Proteínas de Arabidopsis/genética , Homeostasis , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Sci ; 303: 110760, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33487344

RESUMEN

Flavonols, a class of flavonoids, accumulate as protective agents in response to various stresses. Among various environmental stimuli, light is one of the factors regulating flavonol production. MYB12/11/111, members of the R2R3 MYBs family, regulates spatio-temporal flavonol accumulation in Arabidopsis. Although various studies indicate at the involvement of an E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and ELONGATED HYPOCOTYL 5 (HY5) in flavonoid biosynthesis in response to UV-B, the regulatory roles of these components under visible light are yet to be investigated. Here, we demonstrate that flavonol accumulation in Arabidopsis is light-regulated. Furthermore, our analysis suggests that MYB12 is a HY5-dependent light-inducible gene and plays a key role in the activation of the flavonol biosynthesis in response to light. Our results indicate the involvement of COP1 in the dark-dependent repression of MYB12 expression and flavonol accumulation. In addition, results also suggest that the effect of COP1 on MYB12 is indirect and is mediated through HY5, a direct transcriptional activator of the MYB12. Together these findings indicate that COP1 acts as a master negative regulator of flavonol biosynthesis in the dark.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Flavonoles/biosíntesis , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
8.
Plant Sci ; 313: 111073, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763865

RESUMEN

MicroRNAs (miRNAs), a class of single-stranded non-coding RNA of 20-24 nucleotides, regulate gene expression by target gene transcript cleavage or translation inhibition. The phytohormone auxin is a crucial regulator of almost every process involved in plant growth and development. Several studies have demonstrated the involvement of miRNA(s) in the regulation of the auxin signaling pathway and plant development. However, very few studies have identified the auxin-mediated regulation of miRNA(s). In this study, we reveal the detailed mechanism of auxin-mediated regulation of the cell wall-related miR775- Galactosyl transferase (GalT) module, which plays an important role in root growth in Arabidopsis thaliana. We also showed two interdependent mechanisms by which miR775 regulates root growth: miR775-GalT and light-mediated sucrose-dependent pathways. Treatment of GUS reporter lines with Indole Acetic Acid (IAA), sucrose, and light apparently enhanced the abundance of miR775 in root tissue. miR775 overexpressing (miR775OX) lines showed changes in root architecture, including increased primary root growth and root hair, by targeting GalT. miR775OX lines also showed tolerance toward low Pi. These results provide new insights into the auxin regulation of cell wall-related miR775 and suggest its significant role in plant root growth and development by modifying the cell wall.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , MicroARNs/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Sacarosa/metabolismo , Adaptación Ocular/efectos de los fármacos , Adaptación Ocular/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Crecimiento y Desarrollo/genética , Redes y Vías Metabólicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA