RESUMEN
In this paper, a Monte Carlo (MC)-based extended Kalman filter is proposed for a two-dimensional bearings-only tracking problem (BOT). This problem addresses the processing of noise-corrupted bearing measurements from a sea acoustic source and estimates state vectors including position and velocity. Due to the nonlinearity and complex observability properties in the BOT problem, a wide area of research has been focused on improving its state estimation accuracy. The objective of this research is to present an accurate approach to estimate the relative position and velocity of the source with respect to the maneuvering observer. This approach is implemented using the iterated extended Kalman filter (IEKF) in an MC-based iterative structure (MC-IEKF). Re-linearizing dynamic and measurement equations using the IEKF along with the MC campaign applied to the initial conditions result in significantly improved accuracy in the estimation process. Furthermore, an observability analysis is conducted to show the effectiveness of the designed maneuver of the observer. A comparison with the widely used UKF algorithm is carried out to demonstrate the performance of the proposed method.
RESUMEN
Object detection and tracking are pivotal tasks in machine learning, particularly within the domain of computer vision technologies. Despite significant advancements in object detection frameworks, challenges persist in real-world tracking scenarios, including object interactions, occlusions, and background interference. Many algorithms have been proposed to carry out such tasks; however, most struggle to perform well in the face of disturbances and uncertain environments. This research proposes a novel approach by integrating the You Only Look Once (YOLO) architecture for object detection with a robust filter for target tracking, addressing issues of disturbances and uncertainties. The YOLO architecture, known for its real-time object detection capabilities, is employed for initial object detection and centroid location. In combination with the detection framework, the sliding innovation filter, a novel robust filter, is implemented and postulated to improve tracking reliability in the face of disturbances. Specifically, the sliding innovation filter is implemented to enhance tracking performance by estimating the optimal centroid location in each frame and updating the object's trajectory. Target tracking traditionally relies on estimation theory techniques like the Kalman filter, and the sliding innovation filter is introduced as a robust alternative particularly suitable for scenarios where a priori information about system dynamics and noise is limited. Experimental simulations in a surveillance scenario demonstrate that the sliding innovation filter-based tracking approach outperforms existing Kalman-based methods, especially in the presence of disturbances. In all, this research contributes a practical and effective approach to object detection and tracking, addressing challenges in real-world, dynamic environments. The comparative analysis with traditional filters provides practical insights, laying the groundwork for future work aimed at advancing multi-object detection and tracking capabilities in diverse applications.
RESUMEN
This paper proposes a novel estimator for the purpose of fault detection and diagnosis. The interacting multiple model (IMM) strategy is effective for estimating the behaviour of systems with multiple operating modes. Each mode corresponds to a distinct mathematical model and is subject to a filtering process. This paper applies various model-based filters in combination with the IMM strategy. One such estimator employs the recently introduced extended sliding innovation filter (ESIF) known as the IMM-ESIF. The ESIF is an extension of the sliding innovation filter for nonlinear systems based on the sliding mode concept. In the presence of modeling uncertainties, the ESIF has been proven to be more robust compared to methods such as the extended Kalman filter (EKF). The novel IMM-ESIF strategy is also compared with the IMM strategy, which incorporates the unscented Kalman filter (UKF), referred to herein as IMM-UKF. While EKF uses Taylor series approximation to linearize the system model, the UKF uses sigma point to calculate the system's mean and covariance. The methods were applied to an experimental magnetorheological (MR) damper setup, which was designed for testing control and estimation theory. Magnetorheological dampers exhibit a diverse array of applications in the automotive and aerospace sectors, with particular relevance to attenuating vibrations through adaptive suspension systems. Applied to a magnetorheological (MR) damper with distinct operating modes determined by the damper's current, the results showcase the effectiveness of IMM-ESIF. In mixed operational conditions, IMM-ESIF demonstrates a notable 80% to 90% reduction in estimation error compared to its counterparts. Furthermore, it exhibits a 4% to 5% enhancement in correctly classifying operational modes, establishing IMM-ESIF as a promising and efficient alternative for adaptive estimation in electromechanical systems. The improved accuracy in estimating the system's behaviour, even amidst uncertainties and mixed operational scenarios, signifies the potential of IMM-ESIF to significantly enhance the overall robustness and efficiency of estimations.
RESUMEN
In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and stable estimate. In this paper, the SIF is reformulated by including a forgetting factor, which significantly improves estimation performance. The proposed ASIF is applied to several systems including a first-order thermometer, a second-order spring-mass-damper, and a third-order electrohydrostatic actuator (EHA) that was built for experimentation. The proposed ASIF provides an improvement in estimation accuracy while maintaining robustness to modeling uncertainties and disturbances.
RESUMEN
The whale optimization algorithm (WOA) is a widely used metaheuristic optimization approach with applications in various scientific and industrial domains. However, WOA has a limitation of relying solely on the best solution to guide the population in subsequent iterations, overlooking the valuable information embedded in other candidate solutions. To address this limitation, we propose a novel and improved variant called Pbest-guided differential WOA (PDWOA). PDWOA combines the strengths of WOA, particle swarm optimizer (PSO), and differential evolution (DE) algorithms to overcome these shortcomings. In this study, we conduct a comprehensive evaluation of the proposed PDWOA algorithm on both benchmark and real-world optimization problems. The benchmark tests comprise 30-dimensional functions from CEC 2014 Test Functions, while the real-world problems include pressure vessel optimal design, tension/compression spring optimal design, and welded beam optimal design. We present the simulation results, including the outcomes of non-parametric statistical tests including the Wilcoxon signed-rank test and the Friedman test, which validate the performance improvements achieved by PDWOA over other algorithms. The results of our evaluation demonstrate the superiority of PDWOA compared to recent methods, including the original WOA. These findings provide valuable insights into the effectiveness of the proposed hybrid WOA algorithm. Furthermore, we offer recommendations for future research to further enhance its performance and open new avenues for exploration in the field of optimization algorithms. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/PDWOA.
RESUMEN
Many important engineering optimization problems require a strong and simple optimization algorithm to achieve the best solutions. In 2020, Rao introduced three non-parametric algorithms, known as Rao algorithms, which have garnered significant attention from researchers worldwide due to their simplicity and effectiveness in solving optimization problems. In our simulation studies, we have developed a new version of the Rao algorithm called the Fully Informed Search Algorithm (FISA), which demonstrates acceptable performance in optimizing real-world problems while maintaining the simplicity and non-parametric nature of the original algorithms. We evaluate the effectiveness of the suggested FISA approach by applying it to optimize the shifted benchmark functions, such as those provided in CEC 2005 and CEC 2014, and by using it to design mechanical system components. We compare the results of FISA to those obtained using the original RAO method. The outcomes obtained indicate the efficacy of the proposed new algorithm, FISA, in achieving optimized solutions for the aforementioned problems. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/FISA.