Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Nature ; 627(8004): 546-552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467896

RESUMEN

The generation of spectrally pure microwave signals is a critical functionality in fundamental and applied sciences, including metrology and communications. Optical frequency combs enable the powerful technique of optical frequency division (OFD) to produce microwave oscillations of the highest quality1,2. Current implementations of OFD require multiple lasers, with space- and energy-consuming optical stabilization and electronic feedback components, resulting in device footprints incompatible with integration into a compact and robust photonic platform3-5. Here we demonstrate all-optical OFD on a photonic chip by synchronizing two distinct dynamical states of Kerr microresonators pumped by a single continuous-wave laser. The inherent stability of the terahertz beat frequency between the signal and idler fields of an optical parametric oscillator is transferred to a microwave frequency of a Kerr soliton comb, and synchronization is achieved via a coupling waveguide without the need for electronic locking. OFD factors of N = 34 and 468 are achieved for 227 GHz and 16 GHz soliton combs, respectively. In particular, OFD enables a 46 dB phase-noise reduction for the 16 GHz soliton comb, resulting in the lowest microwave noise observed in an integrated photonics platform. Our work represents a simple, effective approach for performing OFD and provides a pathway towards chip-scale devices that can generate microwave frequencies comparable to the purest tones produced in metrological laboratories.

2.
Nature ; 612(7939): 252-258, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385531

RESUMEN

Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks1, microwave photonics2, spectroscopy3, optical wave synthesis4, frequency conversion5, communications6, lidar7, optical computing8 and astronomy9. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity10 or with semiconductor gain11,12. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability 10,13. Alternatively, subpicosecond pulses can be synthesized without mode-locking, by modulating a continuous-wave single-frequency laser using electro-optic modulators1,14-17. Here we demonstrate a chip-scale femtosecond pulse source implemented on an integrated lithium niobate photonic platform18, using cascaded low-loss electro-optic amplitude and phase modulators and chirped Bragg grating, forming a time-lens system19. The device is driven by a continuous-wave distributed feedback laser chip and controlled by a single continuous-wave microwave source without the need for any stabilization or locking. We measure femtosecond pulse trains (520-femtosecond duration) with a 30-gigahertz repetition rate, flat-top optical spectra with a 10-decibel optical bandwidth of 12.6 nanometres, individual comb-line powers above 0.1 milliwatts, and pulse energies of 0.54 picojoules. Our results represent a tunable, robust and low-cost integrated pulsed light source with continuous-wave-to-pulse conversion efficiencies an order of magnitude higher than those achieved with previous integrated sources. Our pulse generator may find applications in fields such as ultrafast optical measurement19,20 or networks of distributed quantum computers21,22.


Asunto(s)
Óxidos , Semiconductores , Ojo , Microondas
3.
Opt Lett ; 49(11): 3150-3153, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824350

RESUMEN

We measured the covariance matrix of the fields generated in an integrated third-order optical parametric oscillator operating above threshold. We observed up to (2.3 ± 0.3) dB of squeezing in amplitude difference and inferred (4.9 ± 0.7) dB of on-chip squeezing, while an excess of noise for the sum of conjugated quadratures hinders the entanglement. The degradation of amplitude correlations and state purity for increasing the pump power is consistent with the observed growth of the phase noise of the fields, showing the necessity of strategies for phase noise control aiming at entanglement generation in these systems.

4.
Nature ; 562(7727): 401-405, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30297798

RESUMEN

Optical frequency combs are broadband sources that offer mutually coherent, equidistant spectral lines with unprecedented precision in frequency and timing for an array of applications1. Frequency combs generated in microresonators through the Kerr nonlinearity require a single-frequency pump laser and have the potential to provide highly compact, scalable and power-efficient devices2,3. Here we demonstrate a device-a laser-integrated Kerr frequency comb generator-that fulfils this potential through use of extremely low-loss silicon nitride waveguides that form both the microresonator and an integrated laser cavity. Our device generates low-noise soliton-mode-locked combs with a repetition rate of 194 gigahertz at wavelengths near 1,550 nanometres using only 98 milliwatts of electrical pump power. The dual-cavity configuration that we use combines the laser and microresonator, demonstrating the flexibility afforded by close integration of these components, and together with the ultra low power consumption should enable production of highly portable and robust frequency and timing references, sensors and signal sources. This chip-based integration of microresonators and lasers should also provide tools with which to investigate the dynamics of comb and soliton generation.

5.
Opt Lett ; 47(9): 2234-2237, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486768

RESUMEN

Kerr soliton combs operate in the anomalous group-velocity dispersion regime through the excitation of dissipative solitons. The generated bandwidth is largely dependent on the cavity dispersion, with higher-order dispersion contributing to dispersive-wave (DW) generation that allows for power enhancement of the comb lines at the wings of the spectrum. However, the spectral position of the DW is highly sensitive to the overall cavity dispersion, and the inevitable dimension variations that occur during the fabrication process result in deviations in the DW emission wavelength. Here, we demonstrate active tuning of the DW wavelength, enabling post-fabrication spectral shaping of the soliton spectrum. We control the DW position by introducing a wavelength-controllable avoided mode crossing through actively tuning the resonances of a silicon nitride coupled microresonator via integrated heaters. We demonstrate DW tuning over 113 nm with a spectral power that can exceed the peak soliton spectral power. In addition, our modeling reveals buildup and enhancement of the DW in the auxiliary resonator, indicating that the mode hybridization arising from the strong coupling between the two resonators is critical for DW formation.

6.
Opt Lett ; 46(21): 5393-5396, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724484

RESUMEN

Microresonator-based platforms with ${\chi ^{(2)}}$ nonlinearities have the potential to perform frequency conversion at high efficiencies and ultralow powers with small footprints. The standard doctrine for achieving high conversion efficiency in cavity-based devices requires "perfect matching," that is, zero phase mismatch while all relevant frequencies are precisely at a cavity resonance, which is difficult to achieve in integrated platforms due to fabrication errors and limited tunabilities. In this Letter, we show that the violation of perfect matching does not necessitate a reduction in conversion efficiency. On the contrary, in many cases, mismatches should be intentionally introduced to improve the efficiency or tunability of conversion. We identify the universal conditions for maximizing the efficiency of cavity-based frequency conversion and show a straightforward approach to fully compensate for parasitic processes such as thermorefractive and photorefractive effects that, typically, can limit the conversion efficiency. We also show the design criteria that make these high-efficiency states stable against nonlinearity-induced instabilities.

7.
Opt Lett ; 46(8): 1824-1827, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857079

RESUMEN

We measure the third-order nonlinear optical response of various dielectrics and semiconductors using the spectrally resolved two-beam coupling method at 2.3 µm, 3.5 µm, 4.5 µm, and 8.3 µm. These materials include fused silica, sapphire, calcium fluoride, magnesium fluoride, zinc sulphide, and zinc selenide. We compare our results with previous literature results and theoretically expected values using two-band model theory. The dispersion of the nonlinear refractive index n2 over this wavelength range is found to be negligible.

8.
Opt Lett ; 46(15): 3657-3660, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329249

RESUMEN

We investigate the conversion efficiency (CE) of soliton modelocked Kerr frequency combs. Our analysis reveals three distinct scaling regimes of CE with the cavity free spectral range (FSR), which depends on the relative contributions of the coupling and propagation loss to the total cavity loss. Our measurements, for the case of critical coupling, verify our theoretical prediction over a range of FSRs and pump powers. Our numerical simulations also indicate that mode crossings have an adverse effect on the achievable CE. Our results indicate that microresonator combs operating with spacings in the electronically detectable regime are highly inefficient, which could have implications for integrated Kerr comb devices.

9.
Opt Lett ; 46(18): 4706-4709, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525087

RESUMEN

We report soliton-effect pulse compression of low energy (∼25pJ), picosecond pulses on a photonic chip. An ultra-low-loss, dispersion-engineered 40-cm-long waveguide is used to compress 1.2-ps pulses by a factor of 18, which represents, to our knowledge, the largest compression factor yet experimentally demonstrated on-chip. Our scheme allows for interfacing with an on-chip picosecond source and offers a path towards a fully integrated stabilized frequency comb source.

10.
Opt Express ; 28(9): 12755-12770, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403766

RESUMEN

A simple and compact straight-cavity laser oscillator incorporating a cascaded quadratic nonlinear crystal and a semiconductor saturable absorber mirror (SESAM) can deliver stable femtosecond modelocking at high pulse repetition rates >10 GHz. In this paper, we experimentally investigate the influence of intracavity dispersion, pump brightness, and cavity design on modelocking with high repetition rates, and use the resulting insights to demonstrate a 10.4-GHz straight-cavity SESAM-modelocked Yb:CALGO laser delivering 108-fs pulses with 812 mW of average output power. This result represents a record-level performance for diode-pumped femtosecond oscillators with repetition rates above 10 GHz. Using the oscillator output without any optical amplification, we demonstrate coherent octave-spanning supercontinuum generation (SCG) in a silicon nitride waveguide. Subsequent f-to-2f interferometry with a periodically poled lithium niobate waveguide enables the detection of a strong carrier-envelope offset (CEO) beat note with a 33-dB signal-to-noise ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA