Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917759

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available. Here, we demonstrated that ADSC-EVs, and not BMSC-EVs, promote wound healing on a murine model of diabetic wounds. Besides a general similarity, the bioinformatic analysis of their protein and miRNA cargo highlighted important differences between these two types of EVs. Molecules present exclusively in ADSC-EVs were highly correlated to angiogenesis, whereas those expressed in BMSC-EVs were preferentially involved in cellular proliferation. Finally, in vitro analysis confirmed that both ADSC and BMSC-EVs exploited beneficial effect on cells involved in skin wound healing such as fibroblasts, keratinocytes and endothelial cells, but through different cellular processes. Consistent with the bioinformatic analyses, BMSC-EVs were shown to mainly promote proliferation, whereas ADSC-EVs demonstrated a major effect on angiogenesis. Taken together, these results provide deeper comparative information on the cargo of ADSC-EVs and BMSC-EVs and the impact on regenerative processes essential for diabetic wound healing.


Asunto(s)
Complicaciones de la Diabetes/terapia , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Úlcera/etiología , Úlcera/terapia , Cicatrización de Heridas , Tejido Adiposo/citología , Animales , Células de la Médula Ósea , Exosomas/metabolismo , Exosomas/ultraestructura , Vesículas Extracelulares/ultraestructura , Citometría de Flujo , Perfilación de la Expresión Génica , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Ratones
2.
Clin Transplant ; 34(8): e13908, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32415711

RESUMEN

INTRODUCTION: Chronic active antibody-mediated rejection (cAMR) is a major determinant of late allograft failure. Rituximab/immunoglobulins (IVIg) + plasma exchange (PLEX) showed controversial results in cAMR treatment. Tocilizumab (TCZ), a humanized anti-interleukin 6 receptor antibody, has been recently used as rescue therapy in patients non-responsive to rituximab/IVIg/PLEX with favorable outcomes. Whether TCZ acts "per se" or requires a priming effect from previous treatments is currently unknown. METHODS: Fifteen patients with cAMR were treated with TCZ as a first-line therapy and followed for a median time of 20.7 months. RESULTS: Despite the majority of patients experiencing advanced transplant glomerulopathy (TG) at diagnosis (60% with cg3), glomerular filtration rate and proteinuria stabilized during the follow-up, with a significant reduction in donor-specific antibodies. Protocol biopsies after 6 months demonstrated significant amelioration of microvascular inflammation and no TG, C4d deposition, or IF/TA progression. Gene-expression and immunofluorescence analysis showed upregulation of three genes (TJP-1, AKR1C3, and CASK) involved in podocyte, mesangial, and tubular restoration. CONCLUSION: Tocilizumab adopted as a first-line approach in cAMR was associated with early serological and histological improvements and functional stabilization even in advanced TG, suggesting a role for the use of TCZ alone with the avoidance of unnecessary previous immunosuppressants.


Asunto(s)
Trasplante de Riñón , Anticuerpos Monoclonales Humanizados/uso terapéutico , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Humanos , Rituximab/uso terapéutico
3.
Exp Eye Res ; 184: 56-63, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31002820

RESUMEN

Microvascular dysfunctions due to altered interactions between endothelial cells (ECs) and pericytes are key-events in the pathogenesis of diabetic retinopathy. Extracellular vesicles (EVs) derived from mesenchymal stem cells cultured in diabetic-like conditions enter pericytes, cause their detachment and migration, and stimulate angiogenesis. We recently showed that EVs from diabetic patients with retinopathy have different miRNA profiling patterns from healthy controls, and determine features of retinopathy in in vitro models of retinal microvasculature. In particular, a role for intra-vesicle miR-150-5p, miR-21-3p and miR-30b-5p was hypothesized. In this work, we further characterized EVs from subjects with diabetic retinopathy and investigated miR-150-5p, miR-21-3p and miR-30b-5p functions inside microvascular cells. Human retinal pericytes and ECs were transfected with mimics or inhibitors, as appropriate, of miR-21-3p, miR-30b-5p and miR-150-5p, to evaluate their ability in promoting cell migration and tube formation. mRNA and protein profiling of EVs extracted from diabetic subjects with (DR group) or without retinopathy (noDR group), and healthy controls (CTR group) were also performed. Modulation of miR-150-5p, miR-21-3p and miR-30b-5p inside microvascular cells confirmed their involvement in abnormal angiogenesis. mRNA analysis revealed differing expression of 7 genes involved in angiogenesis, while subsequent protein analysis confirmed increased expression of HIF-1α in DR group. Since all these molecules are involved in the hypoxia-induced retinal damage characteristic of the disease, our data reinforce the hypothesis of a potential use of miR-150-5p, miR-21-3p and miR-30b-5p extracted from circulating EVs as prognostic biomarkers for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Retinopatía Diabética/genética , Vesículas Extracelulares/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , MicroARNs/genética , Adulto , Anciano , Biomarcadores , Western Blotting , Movimiento Celular , Diabetes Mellitus Tipo 1/fisiopatología , Retinopatía Diabética/fisiopatología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
4.
BMC Cancer ; 18(1): 439, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669525

RESUMEN

BACKGROUND: Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. METHODS: OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. RESULTS: A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. CONCLUSIONS: In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.


Asunto(s)
Carcinoma de Células Escamosas/genética , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Neoplasias de la Boca/genética , Saliva/metabolismo , Adulto , Anciano , Biomarcadores , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Femenino , Papillomavirus Humano 16 , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/virología , Estadificación de Neoplasias , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología
5.
Exp Eye Res ; 176: 69-77, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30008390

RESUMEN

Diabetic retinopathy is a sight-threatening complication of diabetes, characterized by loss of retinal pericytes and abnormal angiogenesis. We previously demonstrated that extracellular vesicles (EVs) derived from mesenchymal stem cells cultured in diabetic-like conditions are able to enter the pericytes, causing their detachment and migration, and stimulating angiogenesis in vitro. The purpose of this work was the molecular and functional characterization of EVs derived from diabetic subjects with or without diabetic retinopathy, compared with healthy controls. Characterization of EVs extracted from serum/plasma of diabetic patients with or without retinopathy, and healthy controls, was performed by FACS and microarray analysis of microRNA (miRNA) content. Relevant miRNA expression was validated through qRT-PCR. EV influence on pericyte detachment, angiogenesis and permeability of the blood-retinal barrier was also investigated. Diabetic subjects had a 2.5 fold higher EV concentration than controls, while expression of surface molecules was unchanged. Microarray analysis revealed 11 differentially expressed miRNAs. Three of them (miR-150-5p, miR-21-3p and miR-30b-5p) were confirmed by qRT-PCR. Plasma EVs from subjects with diabetic retinopathy induced pericyte detachment and pericyte/endothelial cell migration, increased the permeability of pericyte/endothelial cell bilayers and the formation of vessel-like structures, when compared with EVs from controls. In conclusion, circulating EVs show differences between diabetic patients and healthy subjects. EVs extracted from plasma of diabetic retinopathy patients are able to induce features of retinopathy in in vitro models of retinal microvasculature. Our data suggest a role for miR-150-5p, miR-21-3p and miR-30b-5p as potential biomarkers of the onset of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Retinopatía Diabética/sangre , Vesículas Extracelulares/fisiología , Perfilación de la Expresión Génica , MicroARNs/genética , Adulto , Anciano , Biomarcadores/metabolismo , Barrera Hematorretinal/fisiología , Permeabilidad Capilar , Células Cultivadas , Femenino , Citometría de Flujo , Voluntarios Sanos , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Pericitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Vaccines (Basel) ; 12(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400183

RESUMEN

Nucleic acid delivery through extracellular vesicles (EVs) is a well-preserved evolutionary mechanism in all life kingdoms including eukaryotes, prokaryotes, and plants. EVs naturally allow horizontal transfer of native as well as exogenous functional mRNAs, which once incorporated in EVs are protected from enzymatic degradation. This observation has prompted researchers to investigate whether EVs from different sources, including plants, could be used for vaccine delivery. Several studies using human or bacterial EVs expressing mRNA or recombinant SARS-CoV-2 proteins showed induction of a humoral and cell mediated immune response. Moreover, EV-based vaccines presenting the natural configuration of viral antigens have demonstrated advantages in conferring long-lasting immunization and lower toxicity than synthetic nanoparticles. Edible plant-derived EVs were shown to be an alternative to human EVs for vaccine delivery, especially via oral administration. EVs obtained from orange juice (oEVs) loaded with SARS-CoV-2 mRNAs protected their cargo from enzymatic degradation, were stable at room temperature for one year, and were able to trigger a SARS-CoV-2 immune response in mice. Lyophilized oEVs containing the S1 mRNA administered to rats via gavage induced a specific humoral immune response with generation of blocking antibodies, including IgA and Th1 lymphocyte activation. In conclusion, mRNA-containing oEVs could be used for developing new oral vaccines due to optimal mucosal absorption, resistance to stress conditions, and ability to stimulate a humoral and cellular immune response.

7.
Transplant Direct ; 10(6): e1638, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769985

RESUMEN

Background: Transplant glomerulopathy (TG) is the hallmark of chronic antibody-mediated rejection but often occurs without anti-HLA donor-specific antibodies (DSAs) in the assumption that other DSAs may be the effectors of the tissue injury. Recently, we reported a positive effect of interleukin-6 (IL-6) receptor blocker tocilizumab (TCZ) in TG/DSA+. In the present study, we investigate the effect of TCZ in a cohort of TG cases without detectable anti-HLA DSAs. Methods: Single-center retrospective analysis of TG cases without anti-HLA DSAs (TG/DSA) treated with TCZ for chronic antibody-mediated rejection as first-line therapy evaluated through clinical, protocol biopsies, and gene expression analyses was included. Results: Differently from TG/DSA+, TG/DSA- showed a progressive reduction in the estimated glomerular filtration rate at 12 mo and after that with no significant modification in microvascular inflammation or C4d+. No upregulation in tight junction protein-1, aldo-keto reductase family 1 member C3, and calcium/calmodulin-dependent serine protein kinase, documented in TG/DSA+, was noted in post-TCZ biopsies. The reduction of microvascular inflammation was associated with natural killer-cell reduction in TG/DSA+, whereas TG/DSA- tends to maintain or increase periglomerular/interstitial infiltration. Conclusions: In the absence of anti-HLA DSAs, TG behavior seems not to be modified by IL-6 receptor blockade. These results are at variance with observational studies and previous trials with IL-6 inhibitors in TG associated with anti-HLA DSAs. These data may fuel the hypothesis of different mechanisms underlying TGs (including the potentially different roles of natural killer cells) and suggest carefully selecting patients with TG for clinical trials or off-label treatment based on their antidonor serologic status.

8.
Cells ; 12(14)2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37508491

RESUMEN

mRNA-based vaccines were effective in contrasting SARS-CoV-2 infection. However, they presented several limitations of storage and supply chain, and their parenteral administration elicited a limited mucosal IgA immune response. Extracellular vesicles (EVs) have been recognized as a mechanism of cell-to-cell communication well-preserved in all life kingdoms, including plants. Their membrane confers protection from enzyme degradation to encapsulated nucleic acids favoring their transfer between cells. In the present study, EVs derived from the juice of an edible plant (Citrus sinensis) (oEVs) were investigated as carriers of an orally administered mRNA vaccine coding for the S1 protein subunit of SARS-CoV-2 with gastro-resistant oral capsule formulation. The mRNA loaded into oEVs was protected and was stable at room temperature for one year after lyophilization and encapsulation. Rats immunized via gavage administration developed a humoral immune response with the production of specific IgM, IgG, and IgA, which represent the first mucosal barrier in the adaptive immune response. The vaccination also triggered the generation of blocking antibodies and specific lymphocyte activation. In conclusion, the formulation of lyophilized mRNA-containing oEVs represents an efficient delivery strategy for oral vaccines due to their stability at room temperature, optimal mucosal absorption, and the ability to trigger an immune response.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Ratas , Animales , COVID-19/prevención & control , SARS-CoV-2 , Plantas , Inmunidad Mucosa , Inmunoglobulina A , ARN Mensajero/genética
9.
Pharmaceutics ; 15(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36986835

RESUMEN

Plant-derived extracellular vesicles (EVs) may represent a platform for the delivery of RNA-based vaccines, exploiting their natural membrane envelope to protect and deliver nucleic acids. Here, EVs extracted from orange (Citrus sinensis) juice (oEVs) were investigated as carriers for oral and intranasal SARS-CoV-2 mRNA vaccine. oEVs were efficiently loaded with different mRNA molecules (coding N, subunit 1 and full S proteins) and the mRNA was protected from degrading stress (including RNase and simulated gastric fluid), delivered to target cells and translated into protein. APC cells stimulated with oEVs loaded with mRNAs induced T lymphocyte activation in vitro. The immunization of mice with oEVs loaded with S1 mRNA via different routes of administration including intramuscular, oral and intranasal stimulated a humoral immune response with production of specific IgM and IgG blocking antibodies and a T cell immune response, as suggested by IFN-γ production by spleen lymphocytes stimulated with S peptide. Oral and intranasal administration also triggered the production of specific IgA, the mucosal barrier in the adaptive immune response. In conclusion, plant-derived EVs represent a useful platform for mRNA-based vaccines administered not only parentally but also orally and intranasally.

10.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497151

RESUMEN

Severe corneal damage leads to complete vision loss, thereby affecting life quality and impinging heavily on the healthcare system. Current clinical approaches to manage corneal wounds suffer from severe drawbacks, thus requiring the development of alternative strategies. Of late, mesenchymal stromal/stem cell (MSC)-derived extracellular vesicles (EVs) have become a promising tool in the ophthalmic field. In the present study, we topically delivered bone-marrow-derived MSC-EVs (BMSC-EVs), embedded in methylcellulose, in a murine model of alkali-burn-induced corneal damage in order to evaluate their role in corneal repair through histological and molecular analyses, with the support of magnetic resonance imaging. Our data show that BMSC-EVs, used for the first time in this specific formulation on the damaged cornea, modulate cell death, inflammation and angiogenetic programs in the injured tissue, thus leading to a faster recovery of corneal damage. These results were confirmed on cadaveric donor-derived human corneal epithelial cells in vitro. Thus, BMSC-EVs modulate corneal repair dynamics and are promising as a new cell-free approach for intervening on burn wounds, especially in the avascularized region of the eye.


Asunto(s)
Lesiones de la Cornea , Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Médula Ósea , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo , Lesiones de la Cornea/terapia , Lesiones de la Cornea/metabolismo
11.
Acta Diabetol ; 57(12): 1423-1433, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32656709

RESUMEN

AIMS: Although diabetic retinopathy has long been considered a microvascular complication, retinal neurodegeneration and inflammation may precede its clinical manifestations. Despite all research efforts, the primary treatment options remain laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections, both aggressive and targeting the late stages of the disease. Medical treatments addressing the early phases of diabetic retinopathy are therefore needed. We aimed at verifying if thiamine and fenofibrate protect the cells of the inner blood-retinal barrier from the metabolic stress induced by diabetic-like conditions. METHODS: Human microvascular endothelial cells (HMECs), retinal pericytes (HRPs) and Müller cells (MIO-M1) were cultured in intermittent high glucose (intHG) and/or hypoxia, with addition of fenofibrate or thiamine. Modulation of adhesion molecules and angiogenic factors was addressed. RESULTS: Integrins ß1/αVß3 and ICAM1 were upregulated in HMECs/HRPs cultured in diabetic-like conditions, as well as metalloproteases MMP2/9 in HRP, with a reduction in their inhibitor TIMP1; MMP2 increased also in HMEC, and TIMP1 decreased in MIO-M1. VEGF and HIF-1α were strongly increased in HMEC in intHG + hypoxia, and VEGF also in HRP. Ang-1/2 augmented in HMEC/MIO-M1, and MCP-1 in HRP/MIO-M1 in intHG + hypoxia. Thiamine was able to normalize all such abnormal modulations, while fenofibrate had effects in few cases only. CONCLUSIONS: We suggest that endothelial cells and pericytes are more affected than Müller cells by diabetic-like conditions. Fenofibrate shows a controversial behavior, potentially positive on Müller cells and pericytes, but possibly detrimental to endothelium, while thiamine confirms once more to be an effective agent in reducing diabetes-induced retinal damage.


Asunto(s)
Barrera Hematorretinal/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Fenofibrato/farmacología , Glucosa/farmacología , Hipoxia/patología , Tiamina/farmacología , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Retinopatía Diabética/patología , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Humanos , Hipoxia/complicaciones , Hipoxia/metabolismo , Modelos Biológicos , Pericitos/efectos de los fármacos , Pericitos/patología , Retina/efectos de los fármacos , Retina/patología
12.
Cancers (Basel) ; 11(7)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31247906

RESUMEN

Extracellular vesicles (EVs) secreted in biological fluids contain several transcripts of the cell of origin, which may modify the functions and phenotype of proximal and distant cells. Cancer-derived EVs may promote a favorable microenvironment for cancer growth and invasion by acting on stroma and endothelial cells and may favor metastasis formation. The transcripts contained in cancer EVs may be exploited as biomarkers. Protein and extracellular RNA (exRNA) profiling in patient bio-fluids, such as blood and urine, was performed to identify molecular features with potential diagnostic and prognostic values. EVs are concentrated in saliva, and salivary EVs are particularly enriched in exRNAs. Several studies were focused on salivary EVs for the detection of biomarkers either of non-oral or oral cancers. The present paper provides an overview of the available studies on the diagnostic potential of exRNA profiling in salivary EVs.

13.
Exp Mol Med ; 51(3): 1-8, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30872568

RESUMEN

Extracellular vesicles (EVs) are important mediators of intercellular communication in cancer and in normal tissues. EVs transfer biologically active molecules from the cell of origin to recipient cells. This review summarizes the studies on EVs derived from renal cell carcinoma and from a subpopulation of CD105-positive renal cancer stem cells. While EVs from renal cell carcinoma show mild biological activity, EVs from renal cancer stem cells enhance tumor angiogenesis and metastasis formation. The effect is probably due to the transfer of proangiogenic RNA cargo to endothelial cells, which acquire an activated angiogenic phenotype. In vivo, treatment with EVs favors the formation of a premetastatic niche in the lungs. Moreover, EVs derived from renal cancer stem cells modify gene expression in mesenchymal stromal cells, enhancing the expression of genes involved in matrix remodeling, cell migration, and tumor growth. Mesenchymal stromal cells preconditioned with tumor EVs and then coinjected in vivo with renal cancer cells support tumor growth and vessel formation. Finally, tumor EVs promote tumor immune escape by inhibiting the differentiation process of dendritic cells and the activation of T cells. Thus, tumor-derived EVs act on the microenvironment favoring tumor aggressiveness, may contribute to angiogenesis through both direct and indirect mechanisms and are involved in tumor immune escape.


Asunto(s)
Carcinoma de Células Renales/patología , Vesículas Extracelulares/patología , Neoplasias Renales/patología , Animales , Carcinoma de Células Renales/genética , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , ARN/genética , Microambiente Tumoral
14.
Hypertension ; 74(2): 359-367, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31230554

RESUMEN

Patients affected by primary aldosteronism (PA) display an increased risk of cardiovascular events compared with essential hypertension (EH). Endothelial dysfunction favors initiation and progression of atherosclerosis and circulating extracellular vesicles (EVs), reflecting endothelial cell activity, could represent one of the mediators of endothelial dysfunction in these patients. The aim of this study was to characterize circulating EVs from patients diagnosed with PA and to explore their functional significance. Serum EVs were isolated from 12 patients with PA and 12 with EH, matched by sex, age, and blood pressure, and compared with 8 normotensive controls. At nanoparticle tracking analysis, EVs concentration was 2.2× higher in patients with PA ( P=0.033) compared with EH and a significant correlation between EV number and serum aldosterone and potassium levels was identified. Fluorescence-activated cell sorting analysis demonstrated that patients with PA presented a higher absolute number of endothelial-derived EVs compared with both patients with EH and normotensive controls. Through EV mRNA profiling, 15 up-regulated and 4 down-regulated genes in patients with PA compared with EH were identified; moreover, EDN1 was expressed only in patients with PA. Microarray platform was validated by quantative real-time polymerase chain reaction on 4 genes ( CASP1, EDN1, F2R, and HMOX1) involved in apoptosis, inflammation, and endothelial dysfunction. After unilateral adrenalectomy, EVs number and expression of CASP1 and EDN1 significantly decreased in patients with PA ( P<0.05). Additionally, the incubation with PA-derived EVs reduced angiogenesis and induced apoptosis in vitro. Circulating EVs might not only represent a marker of endothelial dysfunction but also contribute themselves to vascular dysfunction in patients with PA.


Asunto(s)
Hipertensión Esencial/fisiopatología , Vesículas Extracelulares/genética , Regulación de la Expresión Génica/genética , Hiperaldosteronismo/genética , Neovascularización Patológica/genética , Adulto , Apoptosis/genética , Estudios de Casos y Controles , Células Cultivadas , Hipertensión Esencial/genética , Femenino , Humanos , Hiperaldosteronismo/sangre , Masculino , Persona de Mediana Edad , Estudios Prospectivos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Valores de Referencia
15.
Stem Cell Rev Rep ; 15(1): 93-111, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30191384

RESUMEN

A potential therapeutic strategy for diabetes is the transplantation of induced-insulin secreting cells. Based on the common embryonic origin of liver and pancreas, we studied the potential of adult human liver stem-like cells (HLSC) to generate in vitro insulin-producing 3D spheroid structures (HLSC-ILS). HLSC-ILS were generated by a one-step protocol based on charge dependent aggregation of HLSC induced by protamine. 3D aggregation promoted the spontaneous differentiation into cells expressing insulin and several key markers of pancreatic ß cells. HLSC-ILS showed endocrine granules similar to those seen in human ß cells. In static and dynamic in vitro conditions, such structures produced C-peptide after stimulation with high glucose. HLSC-ILS significantly reduced hyperglycemia and restored a normo-glycemic profile when implanted in streptozotocin-diabetic SCID mice. Diabetic mice expressed human C-peptide and very low or undetectable levels of murine C-peptide. Hyperglycemia and a diabetic profile were restored after HLSC-ISL explant. The gene expression profile of in vitro generated HLSC-ILS showed a differentiation from HLSC profile and an endocrine commitment with the enhanced expression of several markers of ß cell differentiation. The comparative analysis of gene expression profiles after 2 and 4 weeks of in vivo implantation showed a further ß-cell differentiation, with a genetic profile still immature but closer to that of human islets. In conclusion, protamine-induced spheroid aggregation of HLSC triggers a spontaneous differentiation to an endocrine phenotype. Although the in vitro differentiated HLSC-ILS were immature, they responded to high glucose with insulin secretion and in vivo reversed hyperglycemia in diabetic SCID mice.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Hiperglucemia/complicaciones , Hiperglucemia/terapia , Islotes Pancreáticos/fisiología , Hígado/citología , Células Madre/citología , Adulto , Animales , Biomarcadores/metabolismo , Péptido C/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/ultraestructura , Masculino , Ratones SCID , Fenotipo , Protaminas/farmacología , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Células Madre/efectos de los fármacos
16.
Int J Endocrinol ; 2018: 4302096, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29808089

RESUMEN

RNA molecules are essential and fine regulators of important biological processes. Their role is well documented also in the endocrine system, both in physiological and pathological conditions. Increasing interest is arising about the function and the importance of noncoding RNAs shuttled by extracellular vesicles (EVs). In fact, EV membrane protects nucleic acids from enzyme degradation. Nowadays, the research on EVs and their cargoes, as well as their biological functions, faces the lack of standardization in EV purification. Here, the main techniques for EV isolation are discussed and compared for their advantages and vulnerabilities. Despite the possible discrepancy due to methodological variability, EVs and their RNA content are reported to be key mediators of intercellular communication in pathologies of main endocrine organs, including the pancreas, thyroid, and reproductive system. In particular, the present work describes the role of RNAs contained in EVs in pathogenesis and progression of several metabolic dysfunctions, including obesity and diabetes, and their related manifestations. Their importance in the establishment and progression of thyroid autoimmunity disorders and complicated pregnancy is also discussed. Preliminary studies highlight the attractive possibility to use RNAs contained in EVs as biomarkers suggesting their exploitation for new diagnostic approaches in endocrinology.

17.
Diabetes ; 67(4): 704-716, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29386225

RESUMEN

Endothelial cell-derived extracellular vesicles (CD31EVs) constitute a new entity for therapeutic/prognostic purposes. The roles of CD31EVs as mediators of vascular smooth muscle cell (VSMC) dysfunction in type 2 diabetes (T2D) are investigated herein. We demonstrated that, unlike serum-derived extracellular vesicles in individuals without diabetes, those in individuals with diabetes (D CD31EVs) boosted apoptosis resistance of VSMCs cultured in hyperglycemic condition. Biochemical analysis revealed that this effect relies on changes in the balance between antiapoptotic and proapoptotic signals: increase of bcl-2 and decrease of bak/bax. D CD31EV cargo analysis demonstrated that D CD31EVs are enriched in membrane-bound platelet-derived growth factor-BB (mbPDGF-BB). Thus, we postulated that mbPDGF-BB transfer by D CD31EVs could account for VSMC resistance to apoptosis. By depleting CD31EVs of platelet-derived growth factor-BB (PDGF-BB) or blocking the PDGF receptor ß on VSMCs, we demonstrated that mbPDGF-BB contributes to D CD31EV-mediated bak/bax and bcl-2 levels. Moreover, we found that bak expression is under the control of PDGF-BB-mediated microRNA (miR)-296-5p expression. In fact, while PDGF-BB treatment recapitulated D CD31EV-mediated antiapoptotic program and VSMC resistance to apoptosis, PDGF-BB-depleted CD31EVs failed. D CD31EVs also increased VSMC migration and recruitment to neovessels by means of PDGF-BB. Finally, we found that VSMCs, from human atherosclerotic arteries of individuals with T2D, express low bak/bax and high bcl-2 and miR-296-5p levels. This study identifies the mbPDGF-BB in D CD31EVs as a relevant mediator of diabetes-associated VSMC resistance to apoptosis.


Asunto(s)
Apoptosis , Aterosclerosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Anciano , Anciano de 80 o más Años , Becaplermina , Estudios de Casos y Controles , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Músculo Liso Vascular/citología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
18.
Front Mol Biosci ; 4: 37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638822

RESUMEN

Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

19.
Histol Histopathol ; 31(4): 379-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26662176

RESUMEN

Angiogenesis is a tightly regulated process where a number of different players are involved. Recently, a role for membrane vesicles actively released from cells has been proposed. Virtually all cell types may release non-apoptotic membrane vesicles in the nano-size range containing critical components of the cell of origin. The two main categories of these vesicles include exosomes and microvesicles that differ for biogenesis but, sharing several features and mechanisms of action, have been collectively named extracellular vesicles (EV). EV are able to transfer from one cell to another bioactive lipids, proteins and nucleic acids that may induce changes in the phenotype and functions of the recipient cells. This new mechanism of cell to cell communication has been involved in modulation of the angiogenic process. Tumor cells, inflammatory cells and stem/progenitor cells were shown to release EV with angiogenic properties suggesting that they may act on vascular remodeling in different physiological and pathological conditions. In this review we discuss the evidence for the role and the mechanisms of action of EV in vascular homeostasis and in the angiogenic processes occurring in tumors, inflammation and tissue regeneration.


Asunto(s)
Comunicación Celular/fisiología , Vesículas Extracelulares/metabolismo , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología , Animales , Humanos
20.
Front Oncol ; 6: 125, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242964

RESUMEN

Extracellular vesicles (EVs) are considered to be a novel complex mechanism of cell communication within the tumor microenvironment. EVs may act as vehicles for transcription factors and nucleic acids inducing epigenetic changes in recipient cells. Since tumor EVs may be present in patient biological fluids, it is important to investigate their function and molecular mechanisms of action. It has been shown that tumor cells release EVs, which are capable of regulating cell apoptosis, proliferation, invasion, and epithelial-mesenchymal transition, as well as to suppress activity of immune cells, to enhance angiogenesis, and to prepare a favorable microenvironment for metastasis. On the other hand, EVs derived from stromal cells, such as mesenchymal stem cells (MSCs), may influence the phenotype of tumor cells through reciprocal cross talk greatly influenced by the transcription factors and nucleic acids they carry. In particular, non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, have recently been identified as the main candidates for the phenotypic changes induced in the recipient cells by EVs. ncRNAs, which are important regulators of mRNA and protein expression, can function either as tumor suppressors or as oncogenes, depending on their targets. Herein, we have attempted to revise actual evidence reported in the literature on the role of EVs in tumor biology with particular regard to the cross talk of ncRNAs between cancer cells and MSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA