RESUMEN
Acute myeloid leukaemia (AML) is a highly heterogeneous haematologic malignancy with poor prognosis. We previously showed synergistic antileukaemic interaction between exportin 1 (XPO1) inhibitor KPT-330 (Selinexor) and Bcl-2 inhibitor venetoclax (ABT-199) in preclinical models of AML, which was partially meditated by Mcl-1, although the full mechanism of action remains unknown. In this study, using real-time RT-PCR and Western blot analysis, we show that inhibition of XPO1 via KPT-330 or KPT-8602 (Eltanexor) decreases the mRNA and protein levels of c-Myc, CHK1, WEE1, RAD51 and RRM2. KPT-330 and KPT-8602 induce DNA damage, as determined by alkaline comet assay. In addition, we demonstrate that venetoclax enhances KPT-330- and KPT-8602-induced DNA damage, likely through inhibition of DNA damage repair. This study provides new insight into the molecular mechanism underlying the synergistic antileukaemic activity between venetoclax and XPO1 inhibitors against AML. Our data support the clinical evaluation of this promising combination therapy for the treatment of AML.
Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacología , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Línea Celular Tumoral , Daño del ADN , Humanos , Carioferinas , Leucemia Mieloide Aguda/genética , Receptores Citoplasmáticos y Nucleares , Sulfonamidas , Proteína Exportina 1RESUMEN
FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately one third of acute myeloid leukemia (AML) patients. FLT3-Internal tandem duplication (FLT3-ITD) mutations are the most common FLT3 mutations and are associated with a poor prognosis. Gilteritinib is a FLT3 inhibitor that is US FDA approved for treating adult patients with relapsed/refractory AML and a FLT3 mutation. While gilteritinib monotherapy has improved patient outcome, few patients achieve durable responses. Combining gilteritinib with venetoclax (VEN) appears to make further improvements, though early results suggest that patients with prior exposure to VEN fair much worse than those without prior exposure. MRX-2843 is a promising inhibitor of FLT3 and MERTK. We recently demonstrated that MRX-2843 is equally potent as gilteritinib in FLT3-ITD AML cell lines in vitro and primary patient samples ex vivo. In this study, we investigated the combination of VEN and MRX-2843 against FLT3-ITD AML cells. We found that VEN synergistically enhances cell death induced by MRX-2843 in FLT3-mutated AML cell lines and primary patient samples. Importantly, we found that VEN synergistically enhances cell death induced by MRX-2843 in FLT3-ITD AML cells with acquired resistance to cytarabine (AraC) or VEN+AraC. VEN and MRX-2843 significantly reduce colony-forming capacity of FLT3-ITD primary AML cells. Mechanistic studies show that MRX-2843 decreases Mcl-1 and c-Myc protein levels via transcriptional regulation and combined MRX-2843 and VEN significantly decreases oxidative phosphorylation in FLT3-ITD AML cells. Our findings highlight a promising combination therapy against FLT3-ITD AML, supporting further in vitro and in vivo testing.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Sulfonamidas , Tirosina Quinasa c-Mer , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Sulfonamidas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral , Pirazinas/farmacología , Pirazinas/uso terapéutico , Secuencias Repetidas en Tándem , Compuestos de Anilina , Hidrocarburos Aromáticos con Puentes , Pirimidinas , PirrolesRESUMEN
Background/Aims: The effect and underlying mechanism of microgravity on myocardium still poorly understood. The present study aims to reveal the effect and underlying mechanism of tail-suspension-induced microgravity on myocardium of rats. Methods: Tail-suspension was conducted to simulate microgravity in rats. Echocardiography assay was used to detect cardiac function. The cardiac weight index was measured. Hematoxylin and eosin (HE) staining and transmission electron microscopy assay were conducted to observe the structure of the tissues. RNA sequencing and non-targeted metabolomics was employed to obtain transcriptome and metabolic signatures of heart from tail-suspension-induced microgravity and control rats. Results: Microgravity induced myocardial atrophy and decreased cardiac function in rats. Structure and ultrastructure changes were observed in myocardium of rats stimulated with microgravity. RNA sequencing for protein coding genes was performed and identified a total of 605 genes were differentially expressed in myocardium of rats with tail suspension, with 250 upregulated and 355 downregulated (P < 0.05 and | log2fold change| > 1). A total of 55 differentially expressed metabolites were identified between the two groups (VIP > 1 and P < 0.05) by the metabolic profiles of heart tissues from microgravity groups and control. Several major pathways altered aberrantly at both transcriptional and metabolic levels, including FoxO signaling pathway, Amyotrophic lateral sclerosis, Histidine metabolism, Arginine and proline metabolism. Conclusion: Microgravity can induce myocardial atrophy and decreases cardiac function in rats and the molecular alterations at the metabolic and transcriptomic levels was observed, which indicated major altered pathways in rats with tail suspension. The differentially expressed genes and metabolites-involved in the pathways maybe potential biomarkers for microgravity-induced myocardial atrophy.
RESUMEN
Acute myeloid leukemia (AML) remains a clinical challenge. Venetoclax is an effective Bcl-2 selective inhibitor approved by the U.S. Food and Drug Administration (FDA) for treatment of AML in patients who are 75 years and older or who have comorbidities. However, resistance to venetoclax limits its clinical efficacy. Mcl-1 has been identified as one determinant of resistance to venetoclax treatment. In this study, we investigate the Mcl-1 inhibitor S63845 in combination with venetoclax in AML cells. We found that S63845 synergizes with venetoclax in AML cell lines and primary patient samples. Bak/Bax double knockdown and treatment with the pan-caspase inhibitor Z-VAD-FMK revealed that the combination induces intrinsic apoptosis in AML cells. Inhibition of Mcl-1 using another Mcl-1 selective inhibitor, AZD5991, also synergistically enhanced apoptosis induced by venetoclax in a caspase-dependent manner. Importantly, S63845 in combination with venetoclax can effectively combat AML cells with acquired resistance to the standard chemotherapy drug cytarabine. In light of these facts, the combined inhibition of Mcl-1 and Bcl-2 shows promise against AML cells, including relapse/refractory AML.
Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Citarabina/farmacología , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/tratamiento farmacológico , Pirimidinas/farmacología , Sulfonamidas/farmacología , Tiofenos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Terapia Molecular Dirigida , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidoresRESUMEN
PURPOSE: The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. METHODS: Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. RESULTS: Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. CONCLUSION: Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.