RESUMEN
The dyeing industry effluent causes severe environmental pollution and threatens the native flora and fauna. The current study aimed to analyze the physicochemical parameters of dyeing industry wastewater collected in different sites (K1, E2, S3, T4, and V5), as well as the metal tolerance and decolourisation ability of Aspergillus flavus. Furthermore, the optimal biomass quantity and temperatures required for efficient bioremediation were investigated. Approximately five dyeing industry wastewater samples (K1, E2, S3, T4, and V5) were collected from various sampling stations, and the majority of the physical and chemical characteristics were discovered to be above the permissible limits. A. flavus demonstrated outstanding metal resistance to As, Cu, Cr, Zn, Hg, Pb, Ni, and Cd on Potato Dextrose Agar (PDA) plates at concentrations of up to 500 g mL-1. At 4 g L-1 concentrations, A. flavus biomass decolorized up to 11.2-46.5%. Furthermore, 35°C was found to be the optimal temperature for efficient decolourisation of A. flavus biomass. The toxicity of 35°C-treated wastewater on V. mungo and prawn larvae was significantly reduced. These findings indicate that the biomass of A. flavus can be used to decolorize dyeing industry wastewater.
Asunto(s)
Aspergillus flavus , Biodegradación Ambiental , Biomasa , Colorantes , Residuos Industriales , Aguas Residuales , Contaminantes Químicos del Agua , Aspergillus flavus/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Colorantes/química , Residuos Industriales/análisis , Contaminantes Químicos del Agua/análisis , Animales , Eliminación de Residuos Líquidos/métodos , Metales Pesados/análisis , Metales Pesados/toxicidad , LarvaRESUMEN
Misleading identification and subsequent publications on biological, molecular, and aquaculture data of mangrove mud crab (genus Scylla de Hann 1833) is a major concern in many countries. In this study, multiple molecular markers were used for genetic identification of all four known mud crab species under genus Scylla collected from India, Philippines, Myanmar, Malaysia and Indonesia. Internal Transcribed Spacer (ITS-1), Polymerase chain reaction (PCR)-Restriction Fragment Length Polymorphism (PCR-RFLP) and PCR-based species-specific markers were used to resolve taxonomic ambiguity. PCR-RFLP techniques using NlaIV and BsaJI restriction endonucleases were efficient to differentiate four different mud crab species under genus Scylla with specific fragment profile. The results also justified the use of ITS-1 and PCR-based species-specific markers to identify mud crab species available in many countries quite rapidly and effectively. Several new molecular markers generated during the study are reported here to resolve the taxonomic ambiguity of Scylla species and the results reconfirmed that India is only having two commonly available mud crab species which was reported by the authors earlier.