Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39207259

RESUMEN

BACKGROUND: During antiretroviral therapy (ART), the HIV reservoir exhibits variability as cells with intact genomes decay faster than those with defective genomes, especially in the first years of therapy. The host factors influencing this decay are yet to be characterized. METHODS: Observational study in 74 PWH on ART, of whom 70 (94.6%) were male. We used the intact proviral DNA assay to measure intact proviruses and Luminex immunoassay to measure 32 inflammatory cytokines in plasma. Linear spline models, with a knot at seven years, evaluated the impact of baseline cytokine levels and their trajectories on intact HIV kinetics over these years. RESULTS: Baseline Gal-9 was the most predictive marker for intact HIV kinetics, with lower Gal-9 predicting faster decay over the subsequent seven years. For each 10-fold decrease in Gal-9 at baseline, there was a mean 45% (95%CI 14%-84%) greater decay of intact HIV genomes per year. Conversely, higher baseline ITAC, IL-17, and MIP-1α predicted faster intact HIV decreases. Longitudinal changes in MIP-3α and IL-6 levels strongly associated with intact HIV kinetics, with a 10-fold increase in MIP-3α and a 10-fold decrease in IL-6 associated with a a 9.5% and 10% faster decay of intact HIV genomes per year, respectively. CONCLUSION: The pronounced association between baseline Gal-9 levels and subsequent intact HIV decay suggests that strategies reducing Gal-9 levels could accelerate reservoir decay. Additionally, the correlations of MIP-3α and IL-6 with HIV kinetics indicate a broader cytokine-mediated regulatory network, hinting at multi-targeted interventions that could modulate HIV reservoir dynamics.

2.
J Mol Cell Biol ; 15(4)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37127426

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. In this study, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including immortalized AECs and primary AECs cultured at the air-liquid interface. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an angiotensin-converting enzyme 2 (ACE2)-dependent manner, enhancing the binding of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs, including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Galectinas , SARS-CoV-2 , Replicación Viral , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/metabolismo , COVID-19/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Galectinas/metabolismo , Inflamación/metabolismo , Inflamación/virología , SARS-CoV-2/fisiología
3.
bioRxiv ; 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35378763

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induce the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection. Importance: COVID-19 continues to have a major global health and economic impact. Identifying host molecular determinants that modulate SARS-CoV-2 infectivity and pathology is a key step in discovering novel therapeutic approaches for COVID-19. Several recent studies have revealed that plasma concentrations of the human ß-galactoside-binding protein galectin-9 (Gal-9) are highly elevated in COVID-19 patients. In this study, we investigated the impact of Gal-9 on SARS-CoV-2 pathogenesis ex vivo in airway epithelial cells (AECs), the critical initial targets of SARS-CoV-2 infection. Our findings reveal that Gal-9 potently enhances SARS-CoV-2 replication in AECs, interacting with glycans to enhance the binding between viral particles and entry receptors on the target cell surface. Moreover, we determined that Gal-9 accelerates and exacerbates several virus-induced pro-inflammatory programs in AECs that are established signature characteristics of COVID-19 disease and SARS-CoV-2-induced acute respiratory distress syndrome (ARDS). Our findings suggest that Gal-9 is a promising pharmacological target for COVID-19 therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA