Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Psychiatry ; 26(12): 7610-7620, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34381171

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by substantial, yet highly heterogeneous abnormalities in functional brain connectivity. However, the origin and significance of this phenomenon remain unclear. To unravel ASD connectopathy and relate it to underlying etiological heterogeneity, we carried out a bi-center cross-etiological investigation of fMRI-based connectivity in the mouse, in which specific ASD-relevant mutations can be isolated and modeled minimizing environmental contributions. By performing brain-wide connectivity mapping across 16 mouse mutants, we show that different ASD-associated etiologies cause a broad spectrum of connectional abnormalities in which diverse, often diverging, connectivity signatures are recognizable. Despite this heterogeneity, the identified connectivity alterations could be classified into four subtypes characterized by discrete signatures of network dysfunction. Our findings show that etiological variability is a key determinant of connectivity heterogeneity in ASD, hence reconciling conflicting findings in clinical populations. The identification of etiologically-relevant connectivity subtypes could improve diagnostic label accuracy in the non-syndromic ASD population and paves the way for personalized treatment approaches.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/genética , Encéfalo , Mapeo Encefálico , Imagen por Resonancia Magnética , Ratones , Vías Nerviosas
3.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38585897

RESUMEN

Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3ß inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper- to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3ß, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.

4.
Transl Psychiatry ; 5: e512, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25689573

RESUMEN

Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo(-)(/-)), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo(-/-) mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo(-/-) animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico-hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia.


Asunto(s)
Conducta Animal/efectos de los fármacos , D-Aspartato Oxidasa/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Fenciclidina/farmacología , Corteza Prefrontal/metabolismo , Adulto , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Estudios de Casos y Controles , D-Aspartato Oxidasa/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Inhibición Prepulso/efectos de los fármacos , Inhibición Prepulso/genética , Esquizofrenia
5.
Transl Psychiatry ; 4: e427, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25136890

RESUMEN

Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T(+) Itpr3(tf)/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Modelos Animales de Enfermedad , Dopamina/fisiología , Transmisión Sináptica/fisiología , Animales , Nivel de Alerta/fisiología , Conducta Animal/fisiología , Trastornos Generalizados del Desarrollo Infantil/diagnóstico , Trastornos Generalizados del Desarrollo Infantil/psicología , Sistema Límbico/fisiopatología , Imagen por Resonancia Magnética , Mesencéfalo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Red Nerviosa/fisiopatología , Receptores de Dopamina D2/fisiología , Valores de Referencia , Conducta Social , Conducta Estereotipada
6.
Transl Psychiatry ; 4: e417, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25072322

RESUMEN

D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans.


Asunto(s)
Encéfalo/fisiología , Ácido D-Aspártico/fisiología , Sustancia Gris/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Adulto , Animales , Encéfalo/patología , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/fisiología , Femenino , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica/genética , Sustancia Gris/patología , Hipocampo/patología , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Tamaño de los Órganos/genética , Tamaño de los Órganos/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Corteza Prefrontal/patología , Corteza Prefrontal/fisiología , Biosíntesis de Proteínas/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA