Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 491(7422): 129-33, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23023123

RESUMEN

Developing a vaccine for human immunodeficiency virus (HIV) may be aided by a complete understanding of those rare cases in which some HIV-infected individuals control replication of the virus. Most of these elite controllers express the histocompatibility alleles HLA-B*57 or HLA-B*27 (ref. 3). These alleles remain by far the most robust associations with low concentrations of plasma virus, yet the mechanism of control in these individuals is not entirely clear. Here we vaccinate Indian rhesus macaques that express Mamu-B*08, an animal model for HLA-B*27-mediated elite control, with three Mamu-B*08-restricted CD8(+) T-cell epitopes, and demonstrate that these vaccinated animals control replication of the highly pathogenic clonal simian immunodeficiency virus (SIV) mac239 virus. High frequencies of CD8(+) T cells against these Vif and Nef epitopes in the blood, lymph nodes and colon were associated with viral control. Moreover, the frequency of the CD8(+) T-cell response against the Nef RL10 epitope (Nef amino acids 137-146) correlated significantly with reduced acute phase viraemia. Finally, two of the eight vaccinees lost control of viral replication in the chronic phase, concomitant with escape in all three targeted epitopes, further implicating these three CD8(+) T-cell responses in the control of viral replication. Our findings indicate that narrowly targeted vaccine-induced virus-specific CD8(+) T-cell responses can control replication of the AIDS virus.


Asunto(s)
Vacunas contra el SIDA/inmunología , Síndrome de Inmunodeficiencia Adquirida/virología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Replicación Viral/inmunología , Animales , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , VIH-1/inmunología , Antígeno HLA-B27/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Carga Viral , Viremia/inmunología , Viremia/prevención & control
2.
J Virol ; 89(21): 10802-20, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292326

RESUMEN

UNLABELLED: Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed "elite controllers" [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08(+) animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08(+) macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8(+) T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8(+) T-cell response would facilitate the development of elite control in Mamu-B*08(+) animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08(+) animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8(+) T cells. These vaccine-induced effector memory CD8(+) T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8(+) T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08(+) macaques. IMPORTANCE: Since elite control of chronic-phase viremia is a classic example of an effective immune response against HIV/SIV, elucidating the basis of this phenomenon may provide useful insights into how to elicit such responses by vaccination. We have previously established that vaccine-induced CD8(+) T-cell responses against three immunodominant epitopes can increase the incidence of elite control in SIV-infected Mamu-B*08(+) rhesus macaques­a model of HLA-B*27-mediated elite control. Here, we investigated whether a monotypic vaccine-induced CD8(+) T-cell response targeting the conserved "late-escaping" Nef RL10 epitope can increase the incidence of elite control in Mamu-B*08(+) monkeys. Surprisingly, vaccine-induced Nef RL10-specific CD8(+) T cells selected for variants within days after infection and, ultimately, did not facilitate the development of elite control. Elite control is, therefore, likely to involve CD8(+) T-cell responses against more than one epitope. Together, these results underscore the complexity and multidimensional nature of virologic control of lentivirus infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Proteínas Reguladoras y Accesorias Virales/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Epítopos de Linfocito T/genética , Antígeno HLA-B27/genética , Antígeno HLA-B27/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Macaca mulatta , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Vacunación
3.
Mem Inst Oswaldo Cruz ; 111(8): 535-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27581123

RESUMEN

The use of recombinant proteins may represent an alternative model to inactivated vaccines against hepatitis A virus (HAV). The present study aimed to express the VP1 protein of HAV in baculovirus expression vector system (BEVS). The VP1 was expressed intracellularly with molecular mass of 35 kDa. The VP1 was detected both in the soluble fraction and in the insoluble fraction of the lysate. The extracellular expression of VP1 was also attempted, but the protein remained inside the cell. To verify if hydrophobic characteristics would also be present in the HAV structural polyprotein, the expression of P1-2A protein was evaluated. The P1-2A polyprotein remained insoluble in the cellular extract, even in the early infection stages. These results suggest that HAV structural proteins are prone to form insoluble aggregates. The low solubility represents a drawback for production of large amounts of HAV proteins in BEVS.


Asunto(s)
Baculoviridae/química , Baculoviridae/metabolismo , Virus de la Hepatitis A/química , Proteínas Virales/biosíntesis , Baculoviridae/genética , Regulación Viral de la Expresión Génica , Vectores Genéticos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidad , Proteínas Virales/química , Proteínas Virales/genética
4.
J Virol ; 88(13): 7493-516, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24741098

RESUMEN

UNLABELLED: Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE: Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.


Asunto(s)
Productos del Gen gag/inmunología , Productos del Gen nef/inmunología , Productos del Gen vif/inmunología , Vectores Genéticos/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Vacunas Sintéticas/uso terapéutico , Replicación Viral , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Productos del Gen gag/genética , Productos del Gen nef/genética , Productos del Gen vif/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunidad Celular/inmunología , Macaca mulatta/virología , Masculino , Ratones , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Vacunación
5.
BMC Biotechnol ; 14: 1, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24400649

RESUMEN

BACKGROUND: Streptococcus pneumoniae (S. pneumoniae) causes several serious diseases including pneumonia, septicemia and meningitis. The World Health Organization estimates that streptococcal pneumonia is the cause of approximately 1.9 million deaths of children under five years of age each year. The large number of serotypes underlying the disease spectrum, which would be reflected in the high production cost of a commercial vaccine effective to protect against all of them and the higher level of amino acid sequence conservation as compared to polysaccharide structure, has prompted us to attempt to use conserved proteins for the development of a simpler vaccine. One of the most prominent proteins is pneumolysin (Ply), present in almost all the serotypes known at the moment, which shows an effective protection against S. pneumoniae infections. RESULTS: We have cloned the pneumolysin gene from S. pneumoniae serotype 14 and studied the effects of eight variables related to medium composition and induction conditions on the soluble expression of rPly in Escherichia coli (E. coli) and a 28-4 factorial design was applied. Statistical analysis was carried out to compare the conditions used to evaluate the expression of soluble pneumolysin; rPly activity was evaluated by hemolytic activity assay and served as the main response to evaluate the proper protein expression and folding. The optimized conditions, validated by the use of triplicates, include growth until an absorbance of 0.8 (measured at 600 nm) with 0.1 mM IPTG during 4 h at 25°C in a 5 g/L yeast extract, 5 g/L tryptone, 10 g/L NaCl, 1 g/L glucose medium, with addition of 30 µg/mL kanamycin. CONCLUSIONS: This experimental design methodology allowed the development of an adequate process condition to attain high levels (250 mg/L) of soluble expression of functional rPly in E. coli, which should contribute to reduce operational costs. It was possible to recover the protein in its active form with 75% homogeneity.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Estreptolisinas/biosíntesis , Proteínas Bacterianas/biosíntesis , Biotecnología/métodos , Clonación Molecular , Interpretación Estadística de Datos , Escherichia coli/genética , Análisis Multivariante , Reproducibilidad de los Resultados , Proyectos de Investigación , Streptococcus pneumoniae
6.
BMC Infect Dis ; 14: 391, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25022840

RESUMEN

BACKGROUND: The live attenuated 17DD Yellow Fever vaccine is one of the most successful prophylactic interventions for controlling disease expansion ever designed and utilized in larger scale. However, increase on worldwide vaccine demands and manufacturing restrictions urge for more detailed dose sparing studies. The establishment of complementary biomarkers in addition to PRNT and Viremia could support a secure decision-making regarding the use of 17DD YF vaccine subdoses. The present work aimed at comparing the serum chemokine and cytokine kinetics triggered by five subdoses of 17DD YF Vaccine. METHODS: Neutralizing antibody titers, viremia, cytokines and chemokines were tested on blood samples obtained from eligible primary vaccinees. RESULTS AND DISCUSSION: The results demonstrated that a fifty-fold lower dose of 17DD-YF vaccine (587 IU) is able to trigger similar immunogenicity, as evidenced by significant titers of anti-YF PRNT. However, only subdoses as low as 3,013 IU elicit viremia kinetics with an early peak at five days after primary vaccination equivalent to the current dose (27,476 IU), while other subdoses show a distinct, lower in magnitude and later peak at day 6 post-vaccination. Although the subdose of 587 IU is able to trigger equivalent kinetics of IL-8/CXCL-8 and MCP-1/CCL-2, only the subdose of 3,013 IU is able to trigger similar kinetics of MIG/CXCL-9, pro-inflammatory (TNF, IFN-γ and IL-2) and modulatory cytokines (IL-5 and IL-10). CONCLUSIONS: The analysis of serum biomarkers IFN-γ and IL-10, in association to PRNT and viremia, support the recommendation of use of a ten-fold lower subdose (3,013 IU) of 17DD-YF vaccine.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Vacuna contra la Fiebre Amarilla/administración & dosificación , Fiebre Amarilla/prevención & control , Adolescente , Adulto , Biomarcadores/sangre , Citocinas/sangre , Citometría de Flujo , Humanos , Cinética , Masculino , Vacunación/métodos , Vacunas Atenuadas/administración & dosificación , Viremia/sangre , Adulto Joven
7.
J Virol ; 86(8): 4682-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22318140

RESUMEN

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) primarily infect activated CD4(+) T cells but can infect macrophages. Surprisingly, ex vivo tetramer-sorted SIV-specific CD8(+) T cells that eliminated and suppressed viral replication in SIV-infected CD4(+) T cells failed to do so in SIV-infected macrophages. It is possible, therefore, that while AIDS virus-infected macrophages constitute only a small percentage of all virus-infected cells, they may be relatively resistant to CD8(+) T cell-mediated lysis and continue to produce virus over long periods of time.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Macrófagos/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Replicación Viral/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Femenino , Genes MHC Clase I , Genotipo , Humanos , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Factores de Tiempo
8.
J Ind Microbiol Biotechnol ; 39(6): 897-908, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22366767

RESUMEN

PsaA, a candidate antigen for a vaccine against pneumonia, is well-conserved in all Streptococcus pneumoniae serotypes. A sequence of two-level experimental designs was used to evaluate medium composition and seed conditions to optimize the expression of soluble mature PsaA in E. coli. A face-centered central composite design was first used to evaluate the effects of yeast extract (5 and 23.6 g/L), tryptone (0 and 10 g/L), and glucose (1 and 10 g/L), with replicate experiments at the central point (14.3 g/L yeast extract, 5 g/L tryptone, 5.5 g/L glucose). Next, a central composite design was used to analyze the influence of NaCl concentration (0, 5, and 10 g/L) compared with potassium salts (9.4 g/L K(2)HPO(4)/2.2 g/L KH(2)PO(4)), and seed growth (7 and 16 h). Tryptone had no significant effect and was removed from the medium. Yeast extract and glucose were optimized at their intermediate concentrations, resulting in an animal-derived material-free culture medium containing 15 g/L yeast extract, 8 g/L glucose, 50 µg/mL kanamycin, and 0.4% glycerol, yielding 1 g/L rPsaA after 16 h induction at 25°C in shake flasks at 200 rpm. All the seed age and salt conditions produced similar yields, indicating that no variation had a statistically significant effect on expression. Instead of growing the seed culture for 16 h (until saturation), the process can be conducted with 7 h seed growth until the exponential phase. These results enhanced the process productivity and reduced costs, with 5 g/L NaCl being used rather than potassium salts.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Escherichia coli/genética , Expresión Génica , Lipoproteínas/biosíntesis , Medios de Cultivo/química , Glicerol/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética
9.
Mem Inst Oswaldo Cruz ; 107(2): 262-72, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22415267

RESUMEN

The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.


Asunto(s)
ADN Intergénico/genética , Retículo Endoplásmico/virología , Proteínas Fluorescentes Verdes/genética , Mutagénesis Insercional/genética , Virus de la Fiebre Amarilla/genética , Animales , Chlorocebus aethiops , Proteínas de la Membrana , Células Vero
10.
J Infect Dis ; 204(6): 873-83, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21849284

RESUMEN

BACKGROUND: The live attenuated yellow fever (YF) vaccines have been available for decades and are considered highly effective and one of the safest vaccines worldwide. METHODS: The impact of YF-17DD-antigens recall on cytokine profiles of YF-17DD-vaccinated children were characterized using short-term cultures of whole blood samples and single-cell flow cytometry. This study enrolled seroconverters and nonseroconverters after primovaccination (PV-PRNT⁺ and PV-PRNT⁻), seroconverters after revaccination (RV-PRNT⁺), and unvaccinated volunteers (UV-PRNT⁻). RESULTS: The analysis demonstrated in the PV-PRNT⁺ group a balanced involvement of pro-inflammatory/regulatory adaptive immunity with a prominent participation of innate immunity pro-inflammatory events (IL-12⁺ and TNF-α⁺ NEU and MON). Using the PV-PRNT⁺ cytokine signature as a reference profile, PV-PRNT⁻ presented a striking lack of innate immunity proinflammatory response along with an increased adaptive regulatory profile (IL-4⁺CD4⁺ T cells and IL-10⁺ and IL-5⁺CD8⁺ T cells). Conversely, the RV-PRNT⁺ shifted the overall cytokine signatures toward an innate immunity pro-inflammatory profile and restored the adaptive regulatory response. CONCLUSIONS: The data demonstrated that the overall cytokine signature was associated with the levels of PRNT antibodies with a balanced innate/adaptive immunity with proinflammatory/regulatory profile as the hallmark of PV-PRNT(MEDIUM⁺), whereas a polarized regulatory response was observed in PV-PRNT⁻ and a prominent proinflammatory signature was the characteristic of PV-PRNT(HIGH⁺).


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Citocinas/metabolismo , Leucocitos Mononucleares/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Preescolar , Femenino , Humanos , Lactante , Masculino , Vacuna contra la Fiebre Amarilla/administración & dosificación
11.
J Virol ; 84(7): 3699-706, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089645

RESUMEN

Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Fiebre Amarilla/genética , Animales , Linfocitos T CD4-Positivos/virología , Productos del Gen gag/genética , Productos del Gen gag/inmunología , Macaca mulatta , Fragmentos de Péptidos/inmunología , Vacunas Sintéticas/inmunología , Vacuna contra la Fiebre Amarilla/inmunología
12.
Virol J ; 8: 127, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21418577

RESUMEN

BACKGROUND: The attenuated Yellow fever (YF) 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2) to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. RESULTS: Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. CONCLUSIONS: We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan) antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression of larger domains of ASP-2, which include the TEWETGQI epitope, will elicit better T-CD8+ responses to the latter. It is likely that additional antigens and recombinant virus formulations will be necessary to generate a protective response.


Asunto(s)
Enfermedad de Chagas/inmunología , Epítopos de Linfocito T/inmunología , Expresión Génica , Vectores Genéticos/genética , Neuraminidasa/genética , Neuraminidasa/inmunología , Virus de la Fiebre Amarilla/genética , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/prevención & control , Chlorocebus aethiops , Epítopos de Linfocito T/genética , Femenino , Vectores Genéticos/inmunología , Genoma Viral , Humanos , Ratones , Ratones Endogámicos A , Trypanosoma cruzi/genética , Trypanosoma cruzi/inmunología , Células Vero , Virus de la Fiebre Amarilla/inmunología
13.
Protein Expr Purif ; 78(1): 38-47, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21362478

RESUMEN

The gene corresponding to mature PsaA from Streptococcus pneumoniae serotype 14 was cloned into a plasmid with kanamycin resistance and without a purification tag in Escherichia coli to express high levels of the recombinant protein for large-scale production as a potential vaccine candidate or as a carrier for polysaccharide conjugation at Bio-Manguinhos/Fiocruz. The evaluation of induction conditions (IPTG concentration, temperature and time) in E. coli was accomplished by experimental design techniques to enhance the expression level of mature recombinant PsaA (rPsaA). The optimization of induction process conditions led us to perform the recombinant protein induction at 25°C for 16 h, with 0.1mM IPTG in Terrific Broth medium. At these conditions, the level of mature rPsaA expression obtained in E. coli BL21 (DE3) Star by pET28a induction with IPTG was in the range of 0.8 g/L of culture medium, with a 10-fold lower concentration of inducer than usually employed, which contributes to a less expensive process. Mature rPsaA expressed in E. coli BL21 (DE3) Star accounted for approximately 30-35% of the total protein. rPsaA purification by ion exchange allowed the production of high-purity recombinant protein without fusion tags. The results presented in this work confirm that the purified recombinant protein maintains its stability and integrity for long periods of time in various storage conditions (temperatures of 4 or -70°C using different cryoprotectors) and for at least 3 years at 4 or -70°C in PBS. The conformation of the stored protein was confirmed using circular dichroism. Mature rPsaA antigenicity was proven by anti-rPsaA mouse serum recognition through western blot analysis, and no protein degradation was detected after long periods of storage.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Clonación Molecular/métodos , Lipoproteínas/biosíntesis , Proteínas Recombinantes/biosíntesis , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Western Blotting , Cromatografía por Intercambio Iónico , Almacenaje de Medicamentos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa , Isopropil Tiogalactósido , Lipoproteínas/química , Lipoproteínas/genética , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Temperatura
14.
Mem Inst Oswaldo Cruz ; 106(5): 594-605, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21894381

RESUMEN

Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.


Asunto(s)
Citocinas/biosíntesis , Células Dendríticas/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Biomarcadores/análisis , Diferenciación Celular , Quimiocinas/biosíntesis , Células Dendríticas/virología , Dengue/virología , Vacunas contra el Dengue/inmunología , Virus del Dengue/fisiología , Humanos , Interferón-alfa/inmunología , Interferón-alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral , Fiebre Amarilla/virología , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/fisiología
15.
Immunogenetics ; 62(9): 593-600, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20607226

RESUMEN

The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in six Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development.


Asunto(s)
Linfocitos T Citotóxicos/inmunología , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Animales , Diseño de Fármacos , Macaca mulatta , Fragmentos de Péptidos/inmunología , ARN Helicasas/inmunología , Serina Endopeptidasas/inmunología , Vacunación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Fiebre Amarilla/inmunología
16.
Virus Res ; 137(1): 106-11, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18621087

RESUMEN

Early experiments have resulted in the establishment of an efficient methodology for the production of a yellow fever vaccine in chicken embryo fibroblasts (CEF) using the 17DD virus strain [Freire, M.S., Mann, G.F., Marchevsky, R.S., Yamamura, A.M., Almeida, L.F., Jabor, A.V., Malachias, J.M., Coutinho, E.S., Galler, R., 2005. Production of yellow fever 17DD vaccine virus in primary culture of chicken embryo fibroblasts: yields, thermo and genetic stability, attenuation and immunogenicity. Vaccine 23, 2501-2512]. To investigate the role of the interferon system in vaccine virus yields, CEF cultures seeded at high and low cell densities and infected with the yellow fever 17DD virus were used. The supernatants of these cultures were tested for the presence of interferon by an assay based on the reduction of cytopathic effect of a challenge virus (Sindbis), for the enzymatic activity of the interferon-induced 2',5'-oligoadenylate synthetase and for the expression of 2',5'-oligoadenylate synthetase mRNA. The presence of interferon and its influence in the replication of yellow fever 17DD virus in CEF cultures was clearly demonstrated.


Asunto(s)
Fibroblastos/virología , Interferones/biosíntesis , Vacuna contra la Fiebre Amarilla/biosíntesis , Virus de la Fiebre Amarilla/crecimiento & desarrollo , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Células Cultivadas , Embrión de Pollo , Pollos , Chlorocebus aethiops , Activación Enzimática , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Interferones/genética , Interferones/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Sindbis/metabolismo , Células Vero , Replicación Viral/fisiología , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología
17.
J Virol Methods ; 150(1-2): 57-62, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18420285

RESUMEN

The successful Yellow Fever (YF) vaccine consists of the live attenuated 17D-204 or 17DD viruses. Despite its excellent record of efficacy and safety, serious adverse events have been recorded and influenced extensive vaccination in endemic areas. Therefore, alternative strategies should be considered, which may include inactivated whole virus. High hydrostatic pressure has been described as a method for viral inactivation and vaccine development. The present study evaluated whether high hydrostatic pressure would inactivate the YF 17DD virus. YF 17DD virus was grown in Vero cells in roller bottle cultures and subjected to 310MPa for 3h at 4 degrees C. This treatment abolished YF infectivity and eliminated the ability of the virus to cause disease in mice. Pressure-inactivated virus elicited low level of neutralizing antibody titers although exhibited complete protection against an otherwise lethal challenge with 17DD virus in the murine model. The data warrant further development of pressure-inactivated vaccine against YF.


Asunto(s)
Inactivación de Virus , Vacuna contra la Fiebre Amarilla/efectos adversos , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/fisiología , Animales , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Presión Hidrostática , Ratones , Viabilidad Microbiana , Pruebas de Neutralización , Análisis de Supervivencia , Células Vero , Ensayo de Placa Viral , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/inmunología
18.
Virol J ; 4: 115, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17971212

RESUMEN

BACKGROUND: The yellow fever virus, a member of the genus Flavivirus, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP). This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor. RESULTS: YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 +/- 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus. CONCLUSION: This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow in vivo studies on flavivirus cell and tissue tropism as well as cellular processes related to flavivirus infection.


Asunto(s)
Flavivirus/genética , Vectores Genéticos , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética , Animales , Quimera/genética , Quimera/inmunología , Chlorocebus aethiops , Flavivirus/inmunología , Ingeniería Genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Vacunas Sintéticas/genética , Vacunas Sintéticas/aislamiento & purificación , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Vacunas Virales/genética , Vacunas Virales/aislamiento & purificación
19.
Appl Biochem Biotechnol ; 182(4): 1518-1539, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28211009

RESUMEN

Streptococcus pneumoniae is a colonizer of the human nasopharynx, which accounts for most of the community-acquired pneumonia cases and can cause non-invasive and invasive diseases. Current available vaccines are serotype-specific and the use of recombinant proteins associated with virulence is an alternative to compose vaccines and to overcome these problems. In a previous work, we describe the identification of proteins in S. pneumoniae by reverse vaccinology and the genetic diversity of these proteins in clinical isolates. It was possible to purify a half of 20 selected proteins in soluble form. The expression of these proteins on the pneumococcal cells surface was confirmed by flow cytometry. We demonstrated that some of these proteins were able to bind to extracellular matrix proteins and were recognized by sera from patients with pneumococcal meningitis infection caused by several pneumococcal serotypes. In this context, our results suggest that these proteins may play a role in pneumococcal pathogenesis and might be considered as potential vaccine candidates.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reacciones Cruzadas , Proteínas de la Matriz Extracelular/metabolismo , Genómica , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Ratones , Vacunas Neumococicas/inmunología , Unión Proteica , Serogrupo , Streptococcus pneumoniae/metabolismo
20.
Cell Biochem Biophys ; 44(3): 313-24, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16679518

RESUMEN

The yellow fever (YF) 17D vaccine is a live attenuated virus, and its genetic manipulation constitutes a new platform for vaccine development. In this article, we review one of the possible approaches to enable this development, which is the insertion of foreign protein epitopes into different locations of the genome. We describe the three-dimensional (3D) modeling of the YF 17D virus E protein structure based on tick-borne encephalitis (TBE) and the identification of a potential insertion site located at the YF 17D fg loop. Further 3D analysis revealed that it is possible to accommodate inserts of different sizes and amino acid composition in the flavivirus E protein fg loop. We demonstrate that seven YF 17D viruses bearing foreign epitopes that vary in sequence and length show differential growth characteristics in cell culture. The testing of recombinant viruses for mouse neurovirulence suggests that insertions at the 17D E protein fg loop do not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines.


Asunto(s)
Modelos Moleculares , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/química , Virus de la Fiebre Amarilla/inmunología , Animales , Clonación Molecular , ADN Complementario , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Epítopos/inmunología , Ratones , Conformación Proteica , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacunas Atenuadas/química , Proteínas del Envoltorio Viral/química , Vacuna contra la Fiebre Amarilla/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA