Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746193

RESUMEN

Innate immunity, the first line of defense against pathogens, relies on efficient elimination of invading agents by phagocytes. In the co-evolution of host and pathogen, pathogens developed mechanisms to dampen and evade phagocytic clearance. Here, we report that bacterial pathogens can evade clearance by macrophages through mimicry at the mammalian anti-phagocytic "don't eat me" signaling axis between CD47 (ligand) and SIRPα (receptor). We identified a protein, P66, on the surface of Borrelia burgdorferi that, like CD47, is necessary and sufficient to bind the macrophage receptor SIRPα. Expression of the gene encoding the protein is required for bacteria to bind SIRPα or a high-affinity CD47 reagent. Genetic deletion of p66 increases phagocytosis by macrophages. Blockade of P66 during infection promotes clearance of the bacteria. This study demonstrates that mimicry of the mammalian anti-phagocytic protein CD47 by B. burgdorferi inhibits macrophage-mediated bacterial clearance. Such a mechanism has broad implications for understanding of host-pathogen interactions and expands the function of the established innate immune checkpoint receptor SIRPα. Moreover, this report reveals P66 as a novel therapeutic target in the treatment of Lyme Disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA