Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(38): e2306551120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37708201

RESUMEN

Coarsening of two-phase systems is crucial for the stability of dense particle packings such as alloys, foams, emulsions, or supersaturated solutions. Mean field theories predict an asymptotic scaling state with a broad particle size distribution. Aqueous foams are good model systems for investigations of coarsening-induced structures, because the continuous liquid as well as the dispersed gas phases are uniform and isotropic. We present coarsening experiments on wet foams, with liquid fractions up to their unjamming point and beyond, that are performed under microgravity to avoid gravitational drainage. As time elapses, a self-similar regime is reached where the normalized bubble size distribution is invariant. Unexpectedly, the distribution features an excess of small roaming bubbles, mobile within the network of jammed larger bubbles. These roaming bubbles are reminiscent of rattlers in granular materials (grains not subjected to contact forces). We identify a critical liquid fraction [Formula: see text], above which the bubble assembly unjams and the two bubble populations merge into a single narrow distribution of bubbly liquids. Unexpectedly, [Formula: see text] is larger than the random close packing fraction of the foam [Formula: see text]. This is because, between [Formula: see text] and [Formula: see text], the large bubbles remain connected due to a weak adhesion between bubbles. We present models that identify the physical mechanisms explaining our observations. We propose a new comprehensive view of the coarsening phenomenon in wet foams. Our results should be applicable to other phase-separating systems and they may also help to control the elaboration of solid foams with hierarchical structures.

2.
Soft Matter ; 20(30): 6023-6032, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028020

RESUMEN

Foams coarsen because of pressure differences between bubbles of different sizes. We study the coarsening of quasi-2D foams made from model yield stress fluids: concentrated oil-in-water emulsions. We show that increasing the yield stress of the foamed emulsion continuous phase leads to both slower coarsening and irreversible structural change. The impact of the continuous phase rheology is stronger when the foamed emulsion is wetter or more confined. The bubble growth and organisation both become highly heterogeneous with an excess of small bubbles. We present a model that rationalises the impact of these three parameters by taking into account a resisting pressure required to displace the yield stress fluid around the bubbles.

3.
Soft Matter ; 19(33): 6267-6279, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37551883

RESUMEN

We report foam coarsening studies which were performed in the International Space Station (ISS) to suppress drainage due to gravity. Foams and bubbly liquids with controlled liquid fractions ϕ between 15 and 50% were investigated to study the transition between bubble growth laws previously reported near the dry limit ϕ → 0 and the dilute limit ϕ → 1 (Ostwald ripening). We determined the coarsening rates for the driest foams and the bubbly liquids, they are in close agreement with theoretical predictions. We observe a sharp cross-over between the respective laws at a critical value ϕ*. At liquid fractions beyond this transition, neighboring bubbles are no longer all in contact, like at a jamming transition. Remarkably ϕ* is significantly larger than the random close packing volume fraction of the bubbles ϕrcp which was determined independently. We attribute the differences between ϕ* and ϕrcp to a weakly adhesive bubble interaction that we have studied in complementary ground-based experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA