Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell ; 59(5): 719-31, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26300260

RESUMEN

Oncogene-induced senescence (OIS) is a tumor-suppressive mechanism typified by stable proliferative arrest, a persistent DNA damage response, and the senescence-associated secretory phenotype (SASP), which helps to maintain the senescent state and triggers bystander senescence in a paracrine fashion. Here, we demonstrate that the tumor suppressive histone variant macroH2A1 is a critical component of the positive feedback loop that maintains SASP gene expression and triggers the induction of paracrine senescence. MacroH2A1 undergoes dramatic genome-wide relocalization during OIS, including its removal from SASP gene chromatin. The removal of macroH2A1 from SASP genes results from a negative feedback loop activated by SASP-mediated endoplasmic reticulum (ER) stress. ER stress leads to increased reactive oxygen species and persistent DNA damage response including activation of ATM, which mediates removal macroH2A1 from SASP genes. Together, our findings indicate that macroH2A1 is a critical control point for the regulation of SASP gene expression during senescence.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Senescencia Celular/genética , Senescencia Celular/fisiología , Histonas/genética , Histonas/metabolismo , Línea Celular , Daño del ADN , Estrés del Retículo Endoplásmico , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Oncogenes , Comunicación Paracrina , Fenotipo
2.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513732

RESUMEN

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Animales , Epigenómica , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Represoras/metabolismo
3.
Genes Dev ; 24(1): 21-32, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20008927

RESUMEN

MacroH2A1 is a histone variant that is enriched on the inactive X chromosome (Xi) in mammals and is postulated to play an important, but unknown, role in the repression of gene expression. Here we show that, although macroH2A1 marks repressed autosomal chromatin, it positively regulates transcription when located in the transcribed regions of a subset of its target genes. We used chromatin immunoprecipitation (ChIP) coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of macroH2A1 in IMR90 human primary lung fibroblasts and MCF-7 breast cancer cells. The patterns of macroH2A1 deposition are largely similar across the autosomes of both cell lines. Our studies revealed a genomic localization pattern unique among histone variants; namely, the occupation by macroH2A1 of large chromatin domains (>500 kb in some cases) that contain repressive chromatin marks (e.g., histone H3 Lys 27 trimethylation). The boundaries of macroH2A1-containing domains tend to occur in promoter-proximal regions. Not all promoters, however, serve as macroH2A1 boundaries; many macroH2A1-containing chromatin domains invade the transcribed regions of genes whose products play key roles in development and cell-cell signaling. Surprisingly, the expression of a subset of these genes is positively regulated by macroH2A1. MacroH2A1 also plays a role in augmenting signal-regulated transcription, specifically for genes responsive to serum starvation. Collectively, our results document an unexpected role for macroH2A1 in the escape from heterochromatin-associated silencing and the enhancement of autosomal gene transcription.


Asunto(s)
Cromatina/genética , Silenciador del Gen , Histonas/genética , Histonas/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Crecimiento y Desarrollo/genética , Humanos , Metilación , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética , Sitio de Iniciación de la Transcripción
4.
PLoS Genet ; 7(6): e1002112, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21655091

RESUMEN

Peptidylarginine deiminase IV (PADI4) catalyzes the conversion of positively charged arginine and methylarginine residues to neutrally charged citrulline, and this activity has been linked to the repression of a limited number of target genes. To broaden our knowledge of the regulatory potential of PADI4, we utilized chromatin immunoprecipitation coupled with promoter tiling array (ChIP-chip) analysis to more comprehensively investigate the range of PADI4 target genes across the genome in MCF-7 breast cancer cells. Results showed that PADI4 is enriched in gene promoter regions near transcription start sites (TSSs); and, surprisingly, this pattern of binding is primarily associated with actively transcribed genes. Computational analysis found potential binding sites for Elk-1, a member of the ETS oncogene family, to be highly enriched around PADI4 binding sites; and coimmunoprecipitation analysis then confirmed that Elk-1 physically associates with PADI4. To better understand how PADI4 may facilitate gene transactivation, we then show that PADI4 interacts with Elk-1 at the c-Fos promoter and that, following Epidermal Growth Factor (EGF) stimulation, PADI4 catalytic activity facilitates Elk-1 phosphorylation, histone H4 acetylation, and c-Fos transcriptional activation. These results define a novel role for PADI4 as a transcription factor co-activator.


Asunto(s)
Neoplasias de la Mama/genética , Genoma Humano , Hidrolasas/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteína Elk-1 con Dominio ets/genética , Sitios de Unión , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Fosforilación , Regiones Promotoras Genéticas , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Activación Transcripcional/genética , Proteína Elk-1 con Dominio ets/metabolismo
5.
J Biol Chem ; 287(15): 12405-16, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22334709

RESUMEN

NMNAT-1 and PARP-1, two key enzymes in the NAD(+) metabolic pathway, localize to the nucleus where integration of their enzymatic activities has the potential to control a variety of nuclear processes. Using a variety of biochemical, molecular, cell-based, and genomic assays, we show that NMNAT-1 and PARP-1 physically and functionally interact at target gene promoters in MCF-7 cells. Specifically, we show that PARP-1 recruits NMNAT-1 to promoters where it produces NAD(+) to support PARP-1 catalytic activity, but also enhances the enzymatic activity of PARP-1 independently of NAD(+) production. Furthermore, using two-photon excitation microscopy, we show that NMNAT-1 catalyzes the production of NAD(+) in a nuclear pool that may be distinct from other cellular compartments. In expression microarray experiments, depletion of NMNAT-1 or PARP-1 alters the expression of about 200 protein-coding genes each, with about 10% overlap between the two gene sets. NMNAT-1 enzymatic activity is required for PARP-1-dependent poly(ADP-ribosyl)ation at the promoters of commonly regulated target genes, as well as the expression of those target genes. Collectively, our studies link the enzymatic activities of NMNAT-1 and PARP-1 to the regulation of a set of common target genes through functional interactions at target gene promoters.


Asunto(s)
Regulación de la Expresión Génica , Nicotinamida-Nucleótido Adenililtransferasa/fisiología , Poli(ADP-Ribosa) Polimerasas/fisiología , Regiones Promotoras Genéticas , Transporte Activo de Núcleo Celular , Línea Celular , Activación Enzimática , Perfilación de la Expresión Génica , Humanos , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética
6.
Nat Struct Mol Biol ; 14(6): 548-55, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17529993

RESUMEN

The histone chaperone SET is required for transcription of chromatin templates by RNA polymerase Pol II (Pol II) in vitro. Here we uncover a positive role for SET in dislodging DEK and PARP1, which restrict access to chromatin in the absence of SET and the PARP1 substrate NAD(+). SET binds chromatin, dissociating DEK and PARP1 to allow transcription in the absence of NAD(+). In the absence of SET, depletion of DEK restores chromatin accessibility to endonuclease but does not permit Mediator recruitment or transcription. In the presence of NAD(+), PARP1 poly(ADP-ribosyl)ates and evicts DEK (and itself) from chromatin to permit Mediator loading and transcription independent of SET. An artificial DEK variant resistant to SET and PARP1 represses transcription, indicating a requirement for DEK removal. Therefore, SET, DEK and PARP1 constitute a network governing access to chromatin by the transcription machinery.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Oncogénicas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Proteínas de Unión al ADN , Células HeLa , Chaperonas de Histonas , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II/metabolismo , Transcripción Genética/genética
7.
Elife ; 112022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34984976

RESUMEN

Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.


Asunto(s)
Regulación de la Expresión Génica , Intrones/genética , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Factores de Transcripción/genética , Proteínas Nucleares snRNP/genética , Línea Celular , Humanos , Metilación , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Nucleares snRNP/metabolismo
8.
Nat Struct Mol Biol ; 13(1): 55-62, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16327805

RESUMEN

Cdk7 performs two essential but distinct functions as a CDK-activating kinase (CAK) required for cell-cycle progression and as the RNA polymerase II (Pol II) CTD kinase of general transcription factor IIH. To investigate the substrate specificity underlying this dual function, we created an analog-sensitive (AS) Cdk7 able to use bulky ATP derivatives. Cdk7-AS-cyclin H-Mat1 phosphorylates approximately 10-15 endogenous polypeptides in nuclear extracts. We identify seven of these as known and previously unknown Cdk7 substrates that define two classes: proteins such as Pol II and transcription elongation factor Spt5, recognized efficiently only by the fully activated Cdk7 complex, through sequences surrounding the site of phosphorylation; and CDKs, targeted equivalently by all active forms of Cdk7, dependent on substrate motifs remote from the phosphoacceptor residue. Thus, Cdk7 accomplishes dual functions in cell-cycle control and transcription not through promiscuity but through distinct, stringent modes of substrate recognition.


Asunto(s)
Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Extractos Celulares , Núcleo Celular/metabolismo , Secuencia Conservada , Quinasas Ciclina-Dependientes/genética , Activación Enzimática , Células HeLa , Humanos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Alineación de Secuencia , Especificidad por Sustrato , Quinasa Activadora de Quinasas Ciclina-Dependientes
9.
J Biol Chem ; 284(49): 33926-38, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19812418

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transcripción Genética , Neoplasias de la Mama/genética , Catálisis , Línea Celular Tumoral , Perfilación de la Expresión Génica , Glicósido Hidrolasas/fisiología , Humanos , Modelos Genéticos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/fisiología , Polímeros/química , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Mol Cell Biol ; 40(1)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636161

RESUMEN

Through its ability to bind the ends of poly(ADP-ribose) (PAR) chains, the function of the histone variant macroH2A1.1, including its ability to regulate transcription, is coupled to PAR polymerases (PARPs). PARP1 also has a major role in DNA damage response (DDR) signaling, and our results show that macroH2A1 alters the kinetics of PAR accumulation following acute DNA damage by both suppressing PARP activity and simultaneously protecting PAR chains from degradation. In this way, we demonstrate that macroH2A1 prevents cellular NAD+ depletion, subsequently preventing necrotic cell death that would otherwise occur due to PARP overactivation. We also show that macroH2A1-dependent PAR stabilization promotes efficient repair of oxidative DNA damage. While the role of PAR in recruiting and regulating macrodomain-containing proteins has been established, our results demonstrate that, conversely, macrodomain-containing proteins, and specifically those containing macroH2A1, can regulate PARP1 function through a novel mechanism that promotes both survival and efficient repair during DNA damage response.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Línea Celular , Daño del ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , NAD/metabolismo , Necrosis/genética , Necrosis/metabolismo
11.
Nat Struct Mol Biol ; 26(3): 213-219, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833786

RESUMEN

The growth of telomerase-deficient cancers depends on the alternative lengthening of telomeres (ALT), a homology-directed telomere-maintenance pathway. ALT telomeres exhibit a unique chromatin environment and generally lack the nucleosome remodeler ATRX, pointing to an epigenetic basis for ALT. Recently, we identified a protective role for the ATRX-interacting macroH2A1.2 histone variant during homologous recombination and replication stress (RS). Consistent with an inherent susceptibility to RS, we show that human ALT telomeres are highly enriched for macroH2A1.2. However, in contrast to ATRX-proficient cells, ALT telomeres transiently lose macroH2A1.2 during acute RS to facilitate DNA double-strand break (DSB) formation, a process that is almost completely prevented by ectopic ATRX expression. Telomeric macroH2A1.2 is re-deposited in a DNA damage response (DDR)-dependent manner to promote homologous recombination-associated ALT pathways. Our findings thus identify the dynamic exchange of macroH2A1.2 on chromatin as an epigenetic link among ATRX loss, RS-induced DDR initiation and telomere maintenance via homologous recombination.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN/genética , Histonas/genética , Recombinación Homóloga/genética , Homeostasis del Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Células HEK293 , Células HeLa , Humanos , Telomerasa/metabolismo
12.
Mol Cell Biol ; 25(2): 797-807, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15632079

RESUMEN

To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Chaperonas Moleculares/metabolismo , Moldes Genéticos , Factores de Transcripción/metabolismo , Transcripción Genética , Fraccionamiento Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Genes Reporteros , Células HeLa , Chaperonas de Histonas , Humanos , Chaperonas Moleculares/genética , ARN Polimerasa II/metabolismo , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética
13.
Nat Commun ; 9(1): 5143, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510186

RESUMEN

The histone variant macroH2A1 localizes to two functionally distinct chromatin subtypes marked by either H3K27me3 or H2B acetylations, where it is thought to directly regulate transcription. The recent finding, that macroH2A1 regulates mitochondrial respiration by globally dampening PARP activity, requires the field to re-evaluate which functions of macroH2A1 are due to global effects on cellular metabolism and which are direct effects determined by macroH2A1 chromatin localization. Here, we demonstrate macroH2A1 incorporation into H2B-acetylated chromatin requires a feature in its histone-fold domain, distinguishing this process from incorporation into H3K27me3-containing chromatin in which multiple features of macroH2A1 are sufficient for targeting. In addition, we identify H2BK20 acetylation as a critical modification required to target macroH2A1 to H2B-acetylated chromatin. Our findings have allowed us to definitively establish that macroH2A1's regulation of an important transcriptional program, the senescence-associated secretory phenotype (SASP), requires its accurate genomic localization.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Acetilación , Secuencia de Aminoácidos , Sitios de Unión/genética , Línea Celular , Cromatina/genética , Regulación de la Expresión Génica , Células HEK293 , Histonas/genética , Humanos , Immunoblotting , Lisina/genética , Metilación , Unión Proteica , Homología de Secuencia de Aminoácido
14.
Sci Rep ; 8(1): 841, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339820

RESUMEN

Epithelial-Mesenchymal Transition (EMT) is a biological program that plays key roles in various developmental and pathological processes. Although much work has been done on signaling pathways and transcription factors regulating EMT, the epigenetic regulation of EMT remains not well understood. Histone variants have been recognized as a key group of epigenetic regulators. Among them, macroH2A1 is involved in stem cell reprogramming and cancer progression. We postulated that macroH2A1 may play a role in EMT, a process involving reprogramming of cellular states. In this study, we demonstrate that expression of macroH2A1 is dramatically reduced during EMT induction in immortalized human mammary epithelial cells (HMLE). Moreover, ectopic expression of the macroH2A1.1 isoform, but not macroH2A1.2, can suppress EMT induction and reduce the stem-like cell population in HMLE. Interestingly, macroH2A1.1 overexpression cannot revert stable mesenchymal cells back to the epithelial state, suggesting a stage-specific role of macroH2A1.1 in EMT. We further pinpointed that the function of macroH2A1.1 in EMT suppression is dependent on its ability to bind the NAD+ metabolite PAR, in agreement with the inability to suppress EMT by macroH2A1.2, which lacks the PAR binding domain. Thus, our work discovered a previously unrecognized isoform-specific function of macroH2A1 in regulating EMT induction.


Asunto(s)
Transición Epitelial-Mesenquimal , Histonas/metabolismo , Antígeno CD24/metabolismo , Cadherinas/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Histonas/deficiencia , Histonas/genética , Humanos , Receptores de Hialuranos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Vimentina/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/antagonistas & inhibidores , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
15.
Mol Biol Cell ; 29(5): 632-642, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29282275

RESUMEN

S100A4, a member of the S100 family of Ca2+-binding proteins, is a key regulator of cell migration and invasion. Our previous studies showed that bone marrow-derived macrophages from S100A4-/- mice exhibit defects in directional motility and chemotaxis in vitro and reduced recruitment to sites of inflammation in vivo. We now show that the loss of S100A4 produces two mechanistically distinct phenotypes with regard to macrophage invasion: a defect in matrix degradation, due to a disruption of podosome rosettes caused by myosin-IIA overassembly, and a myosin-independent increase in microtubule acetylation, which increases podosome rosette stability and is sufficient to inhibit macrophage invasion. Our studies point to S100A4 as a critical regulator of matrix degradation, whose actions converge on the dynamics and degradative functions of podosome rosettes.


Asunto(s)
Movimiento Celular , Macrófagos/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo , Animales , Quimiotaxis , Ratones , Modelos Moleculares , Multimerización de Proteína , Proteína de Unión al Calcio S100A4/genética
18.
Nat Struct Mol Biol ; 21(11): 981-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25306110

RESUMEN

The histone variant macroH2A1 regulates gene expression important for differentiation, stem-cell reprogramming and tumor suppression. Here, we demonstrate that in primary human cells, macroH2A1 participates in two physically and functionally distinct types of chromatin marked by either H3K27me3 or nine histone acetylations. Using RNA sequencing, we found that macroH2A1-regulated genes, which have roles in cancer progression, are specifically found in macroH2A1-containing acetylated chromatin. Of the two macroH2A1 variants, macroH2A1.1 and macroH2A1.2, the former is suppressed in cancer and can interact with PARP-generated poly(ADP-ribose). Through the recruitment of PARP-1, macroH2A1.1 promotes the CBP-mediated acetylation of H2B K12 and K120, which either positively or negatively regulates the expression of macroH2A1-target genes. Although macroH2A1-regulated H2B acetylation is a common feature of primary cells, this regulation is typically lost in cancer cells. Consequently, our results provide insight into macroH2A1.1's role in cancer suppression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histonas/genética , Fragmentos de Péptidos/genética , Poli(ADP-Ribosa) Polimerasas/genética , Sialoglicoproteínas/genética , Transcripción Genética , Acetilación , Sitios de Unión , Línea Celular Transformada , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/patología , Feto , Fibroblastos/metabolismo , Fibroblastos/patología , Histonas/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/patología , Fragmentos de Péptidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sialoglicoproteínas/metabolismo , Transducción de Señal
19.
Artículo en Inglés | MEDLINE | ID: mdl-25302076

RESUMEN

BACKGROUND: Stored, soluble histones in eggs are essential for early development, in particular during the maternally controlled early cell cycles in the absence of transcription. Histone post-translational modifications (PTMs) direct and regulate chromatin-templated transactions, so understanding the nature and function of pre-deposition maternal histones is essential to deciphering mechanisms of regulation of development, chromatin assembly, and transcription. Little is known about histone H2A pre-deposition modifications nor known about the transitions that occur upon the onset of zygotic control of the cell cycle and transcription at the mid-blastula transition (MBT). RESULTS: We isolated histones from staged Xenopus laevis oocytes, eggs, embryos, and assembled pronuclei to identify changes in histone H2A modifications prior to deposition and in chromatin. Soluble and chromatin-bound histones from eggs and embryos demonstrated distinct patterns of maternal and zygotic H2A PTMs, with significant pre-deposition quantities of S1ph and R3me1, and R3me2s. We observed the first functional distinction between H2A and H4 S1 phosphorylation, as we showed that H2A and H2A.X-F (also known as H2A.X.3) serine 1 (S1) is phosphorylated concomitant with germinal vesicle breakdown (GVBD) while H4 serine 1 phosphorylation occurs post-MBT. In egg extract H2A/H4 S1 phosphorylation is independent of the cell cycle, chromatin assembly, and DNA replication. H2AS1ph is highly enriched on blastula chromatin during repression of zygotic gene expression while H4S1ph is correlated with the beginning of maternal gene expression and the lengthening of the cell cycle, consistent with distinct biological roles for H2A and H4 S1 phosphorylation. We isolated soluble H2A and H2A.X-F from the egg and chromatin-bound in pronuclei and analyzed them by mass spectrometry analysis to quantitatively determine abundances of S1ph and R3 methylation. We show that H2A and H4 S1ph, R3me1 and R3me2s are enriched on nucleosomes containing both active and repressive histone PTMs in human A549 cells and Xenopus embryos. CONCLUSIONS: Significantly, we demonstrated that H2A phosphorylation and H4 arginine methylation form a new class of bona fide pre-deposition modifications in the vertebrate embryo. We show that S1ph and R3me containing chromatin domains are not correlated with H3 regulatory PTMs, suggesting a unique role for phosphorylation and arginine methylation.

20.
Mol Cell Biol ; 34(13): 2437-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752897

RESUMEN

MacroH2A1 is a histone variant harboring an ∼25-kDa carboxyl-terminal macrodomain. Due to its enrichment on the inactive X chromosome, macroH2A1 was thought to play a role in transcriptional repression. However, recent studies have shown that macroH2A1 occupies autosomal chromatin and regulates genes in a context-specific manner. The macrodomain may play a role in the modulation of gene expression outcomes via physical interactions with effector proteins, which may depend on the ability of the macrodomain to bind NAD(+) metabolite ligands. Here, we identify proline, glutamic acid, and leucine-rich protein 1 (PELP1), a chromatin-associated factor and transcriptional coregulator, as a ligand-independent macrodomain-interacting factor. We used chromatin immunoprecipitation coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of PELP1 in MCF-7 human breast cancer cells. We find that PELP1 genomic localization is highly correlated with that of macroH2A1. Additionally, PELP1 positively correlates with heterochromatic chromatin marks and negatively correlates with active transcription marks, much like macroH2A1. MacroH2A1 specifically recruits PELP1 to the promoters of macroH2A1 target genes, but macroH2A1 occupancy occurs independent of PELP1. This recruitment allows macroH2A1 and PELP1 to cooperatively regulate gene expression outcomes.


Asunto(s)
Proteínas Co-Represoras/genética , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Antibacterianos/farmacología , Línea Celular Tumoral , Cromatina/química , Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras/biosíntesis , Doxiciclina/farmacología , Histonas/genética , Humanos , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Estrógenos/genética , Transducción de Señal/genética , Factores de Transcripción/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA