RESUMEN
Two recent studies by Liu et al.1 in Science and Shi et al.2 in this issue of Molecular Cell identify a mitochondrial GSH-sensing mechanism that couples SLC25A39-mediated GSH import to iron metabolism, advancing our understanding of nutrient sensing within organelles.
Asunto(s)
Hierro , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Glutatión/metabolismo , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismoRESUMEN
The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Complejo I de Transporte de Electrón , Ferroptosis , Animales , Femenino , Humanos , Ratones , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
A recent study by Yang et al.1 uncovers the pyrimidinosome, a multienzyme complex where enzymes from different subcellular compartments collaborate to enable efficient pyrimidine biosynthesis and ferroptosis defense, highlighting the remarkable adaptability of cellular metabolism and new therapeutic opportunities.
Asunto(s)
Ferroptosis , PirimidinasRESUMEN
Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.
Asunto(s)
Proteómica , Ubiquitina Tiolesterasa , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteoma , Ubiquitina/metabolismo , UbiquitinaciónRESUMEN
Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/genética , Anemia de Fanconi/genética , Formaldehído/toxicidad , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Anemia de Fanconi/sangre , Anemia de Fanconi/patología , Formaldehído/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Inestabilidad Genómica/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células K562 , Transcripción GenéticaRESUMEN
To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1ß, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1ß or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.
Asunto(s)
Mitocondrias , Telomerasa/antagonistas & inhibidores , Homeostasis del Telómero , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genes cdc , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Mitocondrias/metabolismo , Invasividad Neoplásica/patología , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genéticaRESUMEN
To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.
Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Neoplasias Óseas/secundario , Línea Celular Tumoral , Cruzamientos Genéticos , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica , Humanos , Masculino , Ratones , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.
Asunto(s)
Adenocarcinoma/metabolismo , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Transcripción GenéticaRESUMEN
Ferroptosis, a form of regulated cell death that is induced by excessive lipid peroxidation, is a key tumour suppression mechanism1-4. Glutathione peroxidase 4 (GPX4)5,6 and ferroptosis suppressor protein 1 (FSP1)7,8 constitute two major ferroptosis defence systems. Here we show that treatment of cancer cells with GPX4 inhibitors results in acute depletion of N-carbamoyl-L-aspartate, a pyrimidine biosynthesis intermediate, with concomitant accumulation of uridine. Supplementation with dihydroorotate or orotate-the substrate and product of dihydroorotate dehydrogenase (DHODH)-attenuates or potentiates ferroptosis induced by inhibition of GPX4, respectively, and these effects are particularly pronounced in cancer cells with low expression of GPX4 (GPX4low). Inactivation of DHODH induces extensive mitochondrial lipid peroxidation and ferroptosis in GPX4low cancer cells, and synergizes with ferroptosis inducers to induce these effects in GPX4high cancer cells. Mechanistically, DHODH operates in parallel to mitochondrial GPX4 (but independently of cytosolic GPX4 or FSP1) to inhibit ferroptosis in the mitochondrial inner membrane by reducing ubiquinone to ubiquinol (a radical-trapping antioxidant with anti-ferroptosis activity). The DHODH inhibitor brequinar selectively suppresses GPX4low tumour growth by inducing ferroptosis, whereas combined treatment with brequinar and sulfasalazine, an FDA-approved drug with ferroptosis-inducing activity, synergistically induces ferroptosis and suppresses GPX4high tumour growth. Our results identify a DHODH-mediated ferroptosis defence mechanism in mitochondria and suggest a therapeutic strategy of targeting ferroptosis in cancer treatment.
Asunto(s)
Dihidroorotato Deshidrogenasa/metabolismo , Ferroptosis , Mitocondrias/metabolismo , Neoplasias/enzimología , Animales , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Dihidroorotato Deshidrogenasa/genética , Femenino , Eliminación de Gen , Humanos , Peroxidación de Lípido , Metabolómica , Ratones Desnudos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Mechanisms of defense against ferroptosis (an iron-dependent form of cell death induced by lipid peroxidation) in cellular organelles remain poorly understood, hindering our ability to target ferroptosis in disease treatment. In this study, metabolomic analyses revealed that treatment of cancer cells with glutathione peroxidase 4 (GPX4) inhibitors results in intracellular glycerol-3-phosphate (G3P) depletion. We further showed that supplementation of cancer cells with G3P attenuates ferroptosis induced by GPX4 inhibitors in a G3P dehydrogenase 2 (GPD2)-dependent manner; GPD2 deletion sensitizes cancer cells to GPX4 inhibition-induced mitochondrial lipid peroxidation and ferroptosis, and combined deletion of GPX4 and GPD2 synergistically suppresses tumor growth by inducing ferroptosis in vivo. Mechanistically, inner mitochondrial membrane-localized GPD2 couples G3P oxidation with ubiquinone reduction to ubiquinol, which acts as a radical-trapping antioxidant to suppress ferroptosis in mitochondria. Taken together, these results reveal that GPD2 participates in ferroptosis defense in mitochondria by generating ubiquinol.
Asunto(s)
Ferroptosis , Glicerolfosfato Deshidrogenasa , Peroxidación de Lípido , Mitocondrias , Proteínas Mitocondriales , Neoplasias , Línea Celular Tumoral , Ferroptosis/genética , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Peroxidación de Lípido/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismoRESUMEN
Ferroptosis, a form of regulated cell death triggered by lipid hydroperoxide accumulation, has an important role in a variety of diseases and pathological conditions, such as cancer. Targeting ferroptosis is emerging as a promising means of therapeutic intervention in cancer treatment. Polyunsaturated fatty acids, reactive oxygen species, and labile iron constitute the major underlying triggers for ferroptosis. Other regulators of ferroptosis have also been discovered recently, among them the mechanistic target of rapamycin complex 1 (mTORC1), a central controller of cell growth and metabolism. Inhibitors of mTORC1 have been used in treating diverse diseases, including cancer. In this review, we discuss recent findings linking mTORC1 to ferroptosis, dissect mechanisms underlying the establishment of mTORC1 as a key ferroptosis modulator, and highlight the potential of co-targeting mTORC1 and ferroptosis in cancer treatment. This review will provide valuable insights for future investigations of ferroptosis and mTORC1 in fundamental biology and cancer therapy.
Asunto(s)
Ferroptosis , Hierro , Peroxidación de Lípido , Diana Mecanicista del Complejo 1 de la Rapamicina , Especies Reactivas de OxígenoRESUMEN
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Orgánulos/enzimología , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Humanos , Neoplasias/patología , Orgánulos/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
OBJECTIVE: Gastro-oesophageal cancers (GEC) are resistant to therapy and lead to poor prognosis. The cancer stem cells (CSCs) and antiapoptotic pathways often confer therapy resistance. We sought to elucidate the antitumour action of a BCL-2 inhibitor, AT101 in GEC in vitro, in vivo and in a clinical trial. METHODS: Extensive preclinical studies in vitro and in vivo were carried out to establish the mechanism action of AT101 on targeting CSCs and antiapoptotic proteins. A pilot clinical trial in patients with GEC was completed with AT-101 added to standard chemoradiation. RESULTS: Overexpression of BCL-2 and MCL-1 was noted in gastric cancer tissues (GC). AT-101 induced apoptosis, reduced proliferation and tumour sphere formation in MCL-1/BCL-2 high GC cells. Interestingly, AT101 dramatically downregulated genes (YAP-1/Sox9) that control CSCs in GEC cell lines regardless of BCL-2/MCL-1 expression. Addition of docetaxel to AT-101 amplified its antiproliferation and induced apoptosis effects. In vivo studies confirmed the combination of AT101 and docetaxel demonstrated stronger antitumour activity accompanied with significant decrease of CSCs biomarkers (YAP1/SOX9). In a pilot clinical trial, 13 patients with oesophageal cancer (EC) received AT101 orally concurrently with chemoradiation. We observed dramatic clinical complete responses and encouraging overall survival in these patients. Clinical specimen analyses revealed that AT-101 dramatically reduced the expression of CSCs genes in treated EC specimens indicating antitumour activity of AT101 relies more on its anti-CSCs activity. CONCLUSIONS: Our preclinical and clinical data suggest that AT-101 overcomes resistance by targeting CSCs pathways suggesting a novel mechanism of action of AT101 in patients with GEC.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Gosipol/análogos & derivados , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Neoplasias Gástricas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Docetaxel/farmacología , Neoplasias Esofágicas/genética , Femenino , Gosipol/farmacología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proyectos Piloto , Proteínas Proto-Oncogénicas c-bcl-2/genética , Neoplasias Gástricas/genéticaRESUMEN
Depending on the circumstance, FOXO (Forkhead O) (FOXO1, FOXO3, and FOXO4) transcription factors activate the expression of markedly different sets of genes to produce different phenotypic effects. For example, distinct FOXO-regulated transcriptional programs stimulate cell death or enhance organism life span. To gain insight into how FOXOs select specific genes for regulation, we performed a screen for genes that modify FOXO activation of TRAIL, a death receptor ligand capable of inducing extrinsic apoptosis. We discovered that the bZIP transcriptional repressor NFIL3 (nuclear factor interleukin 3-regulated) hindered FOXO transcription factor access to chromatin at the TRAIL promoter by binding to nearby DNA and recruiting histone deacetylase-2 (HDAC2) to reduce histone acetylation. In the same manner, NFIL3 repressed expression of certain FOXO targets--e.g., FAS, GADD45α (growth arrest and DNA damage-inducible, α), and GADD45ß--but not others. NFIL3, which we found to be overexpressed in different cancers, supported tumor cell survival largely through repression of TRAIL and antagonized hydrogen peroxide-induced cell death. Moreover, its expression in cancer was associated with lower patient survival. Therefore, NFIL3 alters cancer cell behavior and FOXO function by acting on chromatin to restrict the menu of FOXO target genes. Targeting of NFIL3 could be of therapeutic benefit for cancer patients.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sitios de Unión , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Cromatina/metabolismo , Proteína Forkhead Box O1 , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Estimación de Kaplan-Meier , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genéticaRESUMEN
AMPK is a crucial regulator of energy homeostasis that acts downstream of its upstream kinase liver kinase B1 (LKB1) and calcium/calmodulin-dependent protein kinase 2 (CaMKK2). LKB1 primarily phosphorylates AMPK after energy stress, whereas calcium-mediated activation of AMPK requires CaMKK2, although the regulatory mechanisms of calcium-mediated AMPK activation remain unclear. Using biochemical, microscopic, and genetic approaches, we demonstrate that the stromal interaction molecule (STIM)2, a calcium sensor, acts as a novel regulator of CaMKK2-AMPK signaling. We reveal that STIM2 interacts with AMPK and CaMKK2 and that the increase in intracellular calcium levels promotes AMPK colocalization and interaction with STIM2. We further show that STIM2 deficiency attenuates calcium-induced but not energy stress-induced AMPK activation, possibly by regulating the CaMKK2-AMPK interaction. Together, our results identify a previously unappreciated mechanism that modulates calcium-mediated AMPK activation.-Chauhan, A. S., Liu, X., Jing, J., Lee, H., Yadav, R. K., Liu, J., Zhou, Y., Gan B. STIM2 interacts with AMPK and regulates calcium-induced AMPK activation.
Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Calcio/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Molécula de Interacción Estromal 2/genéticaRESUMEN
The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.
Asunto(s)
Estrés del Retículo Endoplásmico , Redes Reguladoras de Genes , Estrés Fisiológico , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Factor de Transcripción Activador 3/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Metabolismo Energético , Regulación de la Expresión Génica , Glucosa/metabolismo , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Transcripción CHOP/genética , Proteínas Supresoras de Tumor/genética , Tunicamicina/farmacología , Ubiquitina Tiolesterasa/genética , Respuesta de Proteína DesplegadaRESUMEN
FoxO transcription factors serve as the central regulator of cellular homeostasis and are tumor suppressors in human cancers. Recent studies have revealed that, besides their classic functions in promoting cell death and inducing cell cycle arrest, FoxOs also regulate cancer metabolism, an emerging hallmark of cancer. In this review, we summarize the regulatory mechanisms employed to control FoxO activities in the context of cancer biology, and discuss FoxO function in metabolism reprogramming in cancer and interaction with other key cancer metabolism pathways. A deeper understanding of FoxOs in cancer metabolism may reveal novel therapeutic opportunities in cancer treatment.