RESUMEN
BACKGROUND: Black women are at an increased risk of developing uterine leiomyomas and experiencing worse disease prognosis than White women. Epidemiologic and molecular factors have been identified as underlying these disparities, but there remains a paucity of deep, multiomic analysis investigating molecular differences in uterine leiomyomas from Black and White patients. OBJECTIVE: To identify molecular alterations within uterine leiomyoma tissues correlating with patient race by multiomic analyses of uterine leiomyomas collected from cohorts of Black and White women. STUDY DESIGN: We performed multiomic analysis of uterine leiomyomas from Black (42) and White (47) women undergoing hysterectomy for symptomatic uterine leiomyomata. In addition, our analysis included the application of orthogonal methods to evaluate fibroid biomechanical properties, such as second harmonic generation microscopy, uniaxial compression testing, and shear-wave ultrasonography analyses. RESULTS: We found a greater proportion of MED12 mutant uterine leiomyomas from Black women (>35% increase; Mann-Whitney U, P<.001). MED12 mutant tumors exhibited an elevated abundance of extracellular matrix proteins, including several collagen isoforms, involved in the regulation of the core matrisome. Histologic analysis of tissue fibrosis using trichrome staining and secondary harmonic generation microscopy confirmed that MED12 mutant tumors are more fibrotic than MED12 wild-type tumors. Using shear-wave ultrasonography in a prospectively collected cohort, Black patients had fibroids that were firmer than White patients, even when similar in size. In addition, these analyses uncovered ancestry-linked expression quantitative trait loci with altered allele frequencies in African and European populations correlating with differential abundance of several proteins in uterine leiomyomas independently of MED12 mutation status, including tetratricopeptide repeat protein 38. CONCLUSION: Our study shows that Black women have a higher prevalence of uterine leiomyomas harboring mutations in MED12 and that this mutational status correlates with increased tissue fibrosis compared with wild-type uterine leiomyomas. Our study provides insights into molecular alterations correlating with racial disparities in uterine leiomyomas and improves our understanding of the molecular etiology underlying uterine leiomyoma development within these populations.
Asunto(s)
Negro o Afroamericano , Leiomioma , Complejo Mediador , Neoplasias Uterinas , Blanco , Adulto , Femenino , Humanos , Persona de Mediana Edad , Negro o Afroamericano/genética , Proteínas de la Matriz Extracelular/genética , Disparidades en el Estado de Salud , Leiomioma/diagnóstico por imagen , Leiomioma/etnología , Leiomioma/genética , Complejo Mediador/genética , Mutación , Neoplasias Uterinas/diagnóstico por imagen , Neoplasias Uterinas/etnología , Neoplasias Uterinas/genética , Blanco/genéticaRESUMEN
BACKGROUND: Prospective genetic evaluation of patients at this referral research hospital presents clinical research challenges. OBJECTIVES: This study sought not only a single-gene explanation for participants' immune-related presentations, but viewed each participant holistically, with the potential to have multiple genetic contributions to their immune phenotype and other heritable comorbidities relevant to their presentation and health. METHODS: This study developed a program integrating exome sequencing, chromosomal microarray, phenotyping, results return with genetic counseling, and reanalysis in 1505 individuals from 1000 families with suspected or known inborn errors of immunity. RESULTS: Probands were 50.8% female, 71.5% were ≥18 years, and had diverse immune presentations. Overall, 327 of 1000 probands (32.7%) received 361 molecular diagnoses. These included 17 probands with diagnostic copy number variants, 32 probands with secondary findings, and 31 probands with multiple molecular diagnoses. Reanalysis added 22 molecular diagnoses, predominantly due to new disease-gene associations (9 of 22, 40.9%). One-quarter of the molecular diagnoses (92 of 361) did not involve immune-associated genes. Molecular diagnosis was correlated with younger age, male sex, and a higher number of organ systems involved. This program also facilitated the discovery of new gene-disease associations such as SASH3-related immunodeficiency. A review of treatment options and ClinGen actionability curations suggest that at least 251 of 361 of these molecular diagnoses (69.5%) could translate into ≥1 management option. CONCLUSIONS: This program contributes to our understanding of the diagnostic and clinical utility whole exome analysis on a large scale.
Asunto(s)
Exoma , Pruebas Genéticas , Exoma/genética , Femenino , Pruebas Genéticas/métodos , Genómica , Humanos , Masculino , Fenotipo , Estudios ProspectivosRESUMEN
Chlamydia psittaci is an obligate intracellular bacterium that can cause significant disease among a broad range of hosts. In humans, this organism may cause psittacosis, a respiratory disease that can spread to involve multiple organs, and in rare untreated cases may be fatal. There are ten known genotypes based on sequencing the major outer-membrane protein gene, ompA, of C. psittaci. Each genotype has overlapping host preferences and virulence characteristics. Recent studies have compared C. psittaci among other members of the Chlamydiaceae family and showed that this species frequently switches hosts and has undergone multiple genomic rearrangements. In this study, we sequenced five genomes of C. psittaci strains representing four genotypes, A, B, D and E. Due to the known association of the type III secretion system (T3SS) and polymorphic outer-membrane proteins (Pmps) with host tropism and virulence potential, we performed a comparative analysis of these elements among these five strains along with a representative genome from each of the remaining six genotypes previously sequenced. We found significant genetic variation in the Pmps and tbl3SS genes that may partially explain differences noted in C. psittaci host infection and disease.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Chlamydophila psittaci/genética , Variación Genética , Genoma Bacteriano , Sistemas de Secreción Tipo III/genética , Biología Computacional , ADN Bacteriano/química , ADN Bacteriano/genética , Genotipo , Datos de Secuencia Molecular , Análisis de Secuencia de ADNRESUMEN
Strains of Neisseria gonorrhoeae with mosaic penA genes bearing novel point mutations in penA have been isolated from ceftriaxone treatment failures. Such isolates exhibit significantly higher MIC values to third-generation cephalosporins. Here we report the in vitro isolation of two mutants with elevated MICs to cephalosporins. The first possesses a point mutation in the transpeptidase region of the mosaic penA gene, and the second contains an insertion mutation in pilQ.
Asunto(s)
Cefalosporinas/farmacología , Proteínas Fimbrias/genética , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Eritromicina/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mutación , Neisseria gonorrhoeae/aislamiento & purificación , Proteínas de Unión a las Penicilinas/genética , Insuficiencia del TratamientoRESUMEN
Microorganisms may colonize needleless connectors (NCs) on intravascular catheters, forming biofilms and predisposing patients to catheter-associated infection (CAI). Standard and silver-coated NCs were collected from catheterized intensive care unit patients to characterize biofilm formation using culture-dependent and culture-independent methods and to investigate the associations between NC usage and biofilm characteristics. Viable microorganisms were detected by plate counts from 46% of standard NCs and 59% of silver-coated NCs (P=0.11). There were no significant associations (P>0.05, chi-square test) between catheter type, side of catheter placement, number of catheter lumens, site of catheter placement, or NC placement duration and positive NC findings. There was an association (P=0.04, chi-square test) between infusion type and positive findings for standard NCs. Viable microorganisms exhibiting intracellular esterase activity were detected on >90% of both NC types (P=0.751), suggesting that a large percentage of organisms were not culturable using the conditions provided in this study. Amplification of the 16S rRNA gene from selected NCs provided a substantially larger number of operational taxonomic units per NC than did plate counts (26 to 43 versus 1 to 4 operational taxonomic units/NC, respectively), suggesting that culture-dependent methods may substantially underestimate microbial diversity on NCs. NC bacterial communities were clustered by patient and venous access type and may reflect the composition of the patient's local microbiome but also may contain organisms from the health care environment. NCs provide a portal of entry for a wide diversity of opportunistic pathogens to colonize the catheter lumen, forming a biofilm and increasing the potential for CAI, highlighting the importance of catheter maintenance practices to reduce microbial contamination.
Asunto(s)
Bacterias/aislamiento & purificación , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Catéteres Venosos Centrales/microbiología , Desinfectantes/farmacología , Plata/farmacología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Análisis por Conglomerados , Recuento de Colonia Microbiana , Hospitales , Humanos , Unidades de Cuidados Intensivos , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Introduction: The domestic dog, Canis familiaris, is quickly gaining traction as an advantageous model for use in the study of cancer, one of the leading causes of death worldwide. Naturally occurring canine cancers share clinical, histological, and molecular characteristics with the corresponding human diseases. Methods: In this study, we take a deep-learning approach to test how similar the gene expression profile of canine glioma and bladder cancer (BLCA) tumors are to the corresponding human tumors. We likewise develop a tool for identifying misclassified or outlier samples in large canine oncological datasets, analogous to that which was developed for human datasets. Results: We test a number of machine learning algorithms and found that a convolutional neural network outperformed logistic regression and random forest approaches. We use a recently developed RNA-seq-based convolutional neural network, TULIP, to test the robustness of a human-data-trained primary tumor classification tool on cross-species primary tumor prediction. Our study ultimately highlights the molecular similarities between canine and human BLCA and glioma tumors, showing that protein-coding one-to-one homologs shared between humans and canines, are sufficient to distinguish between BLCA and gliomas. Discussion: The results of this study indicate that using protein-coding one-to-one homologs as the features in the input layer of TULIP performs good primary tumor prediction in both humans and canines. Furthermore, our analysis shows that our selected features also contain the majority of features with known clinical relevance in BLCA and gliomas. Our success in using a human-data-trained model for cross-species primary tumor prediction also sheds light on the conservation of oncological pathways in humans and canines, further underscoring the importance of the canine model system in the study of human disease.
RESUMEN
BACKGROUND: Genomics diagnostic tests are done for a wide spectrum of complex genetics conditions such as autism and cancer. The growth of technology has not only aided in successfully decoding the genetic variants that causes or trigger these disorders. However, interpretation of these variants is not a trivial task even at a level of distinguish pathogenic vs benign variants. METHODS: We used the clinically significant variants from ClinVar database to evaluate the performance of 14 most popular in-silico predictors using supervised learning methods. We implemented a feature selection and random forest classification algorithm to identify the best combination of predictors to evaluate the pathogenicity of a variant. Finally, we have also utilized this combination of predictors to reclassify the variants of unknown significance in MeCP2 gene that are associated with the Rett syndrome. RESULTS: The results from analysis shows an optimized selection of prediction algorithm and developed a combinatory predictor method. Our combinatory approach of using both best performing independent and ensemble predictors reduces any algorithm biases in variant characterization. The reclassification of variants (such as VUS) in MECP2 gene associated with RETT syndrome suggest that the combinatory in-silico predictor approach had a higher success rate in categorizing their pathogenicity.