Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781969

RESUMEN

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Asunto(s)
Proteínas de Plantas , Regeneración , Transducción de Señal , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos/metabolismo
2.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379837

RESUMEN

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Asunto(s)
Edición Génica , Proteínas , Proteínas/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN , Sistemas CRISPR-Cas , Citosina/metabolismo
3.
Cell ; 184(6): 1621-1635, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33581057

RESUMEN

Feeding the ever-growing population is a major challenge, especially in light of rapidly changing climate conditions. Genome editing is set to revolutionize plant breeding and could help secure the global food supply. Here, I review the development and application of genome editing tools in plants while highlighting newly developed techniques. I describe new plant breeding strategies based on genome editing and discuss their impact on crop production, with an emphasis on recent advancements in genome editing-based plant improvements that could not be achieved by conventional breeding. I also discuss challenges facing genome editing that must be overcome before realizing the full potential of this technology toward future crops and food production.


Asunto(s)
Agricultura , Productos Agrícolas/genética , Ingeniería Genética , Genoma de Planta , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
4.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539781

RESUMEN

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Asunto(s)
Productos Agrícolas/genética , Domesticación , Oryza/genética , Sistemas CRISPR-Cas , Seguridad Alimentaria , Edición Génica , Variación Genética , Genoma de Planta , Oryza/clasificación , Poliploidía
5.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506694

RESUMEN

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Asunto(s)
Monocitos , Células Madre , Ratones , Humanos , Animales , Fenotipo , Células Cultivadas , Células Dendríticas , Diferenciación Celular
6.
Nat Rev Mol Cell Biol ; 21(11): 661-677, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32973356

RESUMEN

The prokaryote-derived CRISPR-Cas genome editing technology has altered plant molecular biology beyond all expectations. Characterized by robustness and high target specificity and programmability, CRISPR-Cas allows precise genetic manipulation of crop species, which provides the opportunity to create germplasms with beneficial traits and to develop novel, more sustainable agricultural systems. Furthermore, the numerous emerging biotechnologies based on CRISPR-Cas platforms have expanded the toolbox of fundamental research and plant synthetic biology. In this Review, we first briefly describe gene editing by CRISPR-Cas, focusing on the newest, precise gene editing technologies such as base editing and prime editing. We then discuss the most important applications of CRISPR-Cas in increasing plant yield, quality, disease resistance and herbicide resistance, breeding and accelerated domestication. We also highlight the most recent breakthroughs in CRISPR-Cas-related plant biotechnologies, including CRISPR-Cas reagent delivery, gene regulation, multiplexed gene editing and mutagenesis and directed evolution technologies. Finally, we discuss prospective applications of this game-changing technology.

7.
Nat Rev Mol Cell Biol ; 21(12): 782, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33149284

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Rev Mol Cell Biol ; 21(11): 712, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33046904

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Rev Genet ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658741

RESUMEN

Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.

10.
Nature ; 630(8016): 484-492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811729

RESUMEN

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Asunto(s)
Bacterias , Bacteriófagos , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Bacterias/virología , Bacterias/genética , Bacterias/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Chryseobacterium/genética , Chryseobacterium/inmunología , Chryseobacterium/virología , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , División del ADN , Sitios Genéticos/genética , Modelos Moleculares , Dominios Proteicos
11.
Mol Cell ; 82(2): 333-347, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34968414

RESUMEN

The emergence of CRISPR-Cas systems has accelerated the development of gene editing technologies, which are widely used in the life sciences. To improve the performance of these systems, workers have engineered and developed a variety of CRISPR-Cas tools with a broader range of targets, higher efficiency and specificity, and greater precision. Moreover, CRISPR-Cas-related technologies have also been expanded beyond making cuts in DNA by introducing functional elements that permit precise gene modification, control gene expression, make epigenetic changes, and so on. In this review, we introduce and summarize the characteristics and applications of different types of CRISPR-Cas tools. We discuss certain limitations of current approaches and future prospects for optimizing CRISPR-Cas systems.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Animales , Proteínas Asociadas a CRISPR/metabolismo , Difusión de Innovaciones , Humanos
12.
Nature ; 602(7897): 455-460, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140403

RESUMEN

Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Edición Génica , Genoma de Planta , Triticum , Arabidopsis/genética , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Mutación , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/microbiología
13.
Mol Cell ; 79(5): 728-740.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32721385

RESUMEN

Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.


Asunto(s)
Citidina Desaminasa/genética , Citosina , Edición Génica/métodos , Antígenos de Histocompatibilidad Menor/genética , Oryza/genética , Citosina/química , Genes de Plantas , Humanos , Mutación , ARN Guía de Kinetoplastida/química , ARN de Planta/química , Reproducibilidad de los Resultados
14.
Plant Cell ; 34(5): 1784-1803, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34999846

RESUMEN

Reactive oxygen species (ROS) are vital for plant immunity and regulation of their production is crucial for plant health. While the mechanisms that elicit ROS production have been relatively well studied, those that repress ROS generation are less well understood. Here, via screening Brachypodium distachyon RNA interference mutants, we identified BdWRKY19 as a negative regulator of ROS generation whose knockdown confers elevated resistance to the rust fungus Puccinia brachypodii. The three wheat paralogous genes TaWRKY19 are induced during infection by virulent P. striiformis f. sp. tritici (Pst) and have partially redundant roles in resistance. The stable overexpression of TaWRKY19 in wheat increased susceptibility to an avirulent Pst race, while mutations in all three TaWRKY19 copies conferred strong resistance to Pst by enhancing host plant ROS accumulation. We show that TaWRKY19 is a transcriptional repressor that binds to a W-box element in the promoter of TaNOX10, which encodes an NADPH oxidase and is required for ROS generation and host resistance to Pst. Collectively, our findings reveal that TaWRKY19 compromises wheat resistance to the fungal pathogen and suggest TaWRKY19 as a potential target to improve wheat resistance to the commercially important wheat stripe rust fungus.


Asunto(s)
Basidiomycota , Triticum , Basidiomycota/metabolismo , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Triticum/metabolismo
16.
BMC Genomics ; 25(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166615

RESUMEN

BACKGROUND: Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS: We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS: In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.


Asunto(s)
Variaciones en el Número de Copia de ADN , Patos , Animales , Patos/genética , Genoma , Análisis de Secuencia de ADN , Fenotipo , Polimorfismo de Nucleótido Simple
17.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892031

RESUMEN

Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación Completa del Genoma , Animales , Variaciones en el Número de Copia de ADN/genética , Porcinos/genética , Secuenciación Completa del Genoma/métodos , China , Cruzamiento , Variación Genética , Genoma , Evolución Molecular
18.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33048117

RESUMEN

The DNA methyltransferases (DNMTs) (DNMT3A, DNMT3B and DNMT3L) are primarily responsible for the establishment of genomic locus-specific DNA methylation patterns, which play an important role in gene regulation and animal development. However, this important protein family's binding mechanism, i.e. how and where the DNMTs bind to genome, is still missing in most tissues and cell lines. This motivates us to explore DNMTs and TF's cooperation and develop a network regularized logistic regression model, GuidingNet, to predict DNMTs' genome-wide binding by integrating gene expression, chromatin accessibility, sequence and protein-protein interaction data. GuidingNet accurately predicted methylation experimental data validated DNMTs' binding, outperformed single data source based and sparsity regularized methods and performed well in within and across tissue prediction for several DNMTs in human and mouse. Importantly, GuidingNet can reveal transcription cofactors assisting DNMTs for methylation establishment. This provides biological understanding in the DNMTs' binding specificity in different tissues and demonstrate the advantage of network regularization. In addition to DNMTs, GuidingNet achieves good performance for other chromatin regulators' binding. GuidingNet is freely available at https://github.com/AMSSwanglab/GuidingNet.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN/genética , Regulación Enzimológica de la Expresión Génica , Genoma Humano , Modelos Biológicos , Mapas de Interacción de Proteínas , Factores de Transcripción , Animales , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , ADN (Citosina-5-)-Metiltransferasas/genética , Bases de Datos Genéticas , Humanos , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
PLoS Biol ; 18(7): e3000747, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32644995

RESUMEN

CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Staphylococcus aureus/metabolismo , Biblioteca de Genes , Ingeniería Genética , Sitios Genéticos , Genoma Humano , Células HEK293 , Humanos , Nucleótidos/genética , Fenotipo , Reproducibilidad de los Resultados , Activación Transcripcional/genética
20.
Mol Ther ; 30(9): 2933-2941, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35821638

RESUMEN

Adenine base editors (ABEs) are novel genome-editing tools, and their activity has been greatly enhanced by eight additional mutations, thus named ABE8e. However, elevated catalytic activity was concomitant with frequent generation of bystander mutations. This bystander effect precludes its safe applications required in human gene therapy. To develop next-generation ABEs that are both catalytically efficient and positionally precise, we performed combinatorial engineering of NG-ABE8e. We identify a novel variant (NG-ABE9e), which harbors nine mutations. NG-ABE9e exhibits robust and precise base-editing activity in human cells, with more than 7-fold bystander editing reduction at some sites, compared with NG-ABE8e. To demonstrate its practical utility, we used NG-ABE9e to correct the frequent T17M mutation in Rhodopsin for autosomal dominant retinitis pigmentosa. It reduces bystander editing by ∼4-fold while maintaining comparable efficiency. NG-ABE9e possesses substantially higher activity than NG-ABEmax and significantly lower bystander editing than NG-ABE8e in rice. Therefore, this study provides a versatile and improved adenine base editor for genome editing.


Asunto(s)
Adenina , Edición Génica , Sistemas CRISPR-Cas , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA