RESUMEN
The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.
Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Neutrófilos , Receptores Inmunológicos , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Progresión de la Enfermedad , Edición Génica , Inmunoterapia , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Neoplasias/inmunología , Neoplasias/patología , Neutrófilos/inmunología , Neutrófilos/patología , Receptores Inmunológicos/inmunología , Análisis de Supervivencia , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/patología , Microambiente Tumoral , Activación de LinfocitosRESUMEN
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid ß-oxidation, especially ß-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine ß-hydroxybutyrylation (Kbhb) is a ß-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.
Asunto(s)
Ácido 3-Hidroxibutírico , Proteínas Quinasas Activadas por AMP , Miocardio , Animales , Humanos , Ratones , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Proteómica , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: To investigate the relationship between estimated glucose disposal rate (eGDR), a surrogate indicator of insulin resistance, and atherosclerotic cardiovascular diseases (ASCVD) incidence risk. METHODS: This prospective cohort study utilized data from the 6026 participants from the Multi-Ethnic Study of Atherosclerosis. The eGDR (mg/kg/min) was computed as 21.158 - (0.09 × waist circumference [cm]) - (3.407 × hypertension [yes/no]) - (0.551 × HbA1c [%]). The population was categorized into four subgroups according to the quartiles (Q) of eGDR. Cox proportional hazard models were applied to assess the associations between eGDR and ASCVD incidence, and restricted cubic spine (RCS) was employed to examine the dose-response relationship. RESULTS: The mean age of participants was 63.6 ± 10.1 years, comprising 3163 (52.5%) women. Over a median follow-up duration of 14.1 years, 565 (9.4%) developed ASCVD, including 256 (4.2%) myocardial infarctions, 234 (3.9%) strokes, and 358 (5.9%) fatal coronary heart disease. Compared to the lowest quartile, the adjusted hazard ratios (95% confidence intervals) for incident ASCVD for Q2-Q4 were 0.87 (0.68-1.10), 0.63 (0.47-0.84), and 0.43 (0.30-0.64), respectively. Per 1 standard deviation increase in eGDR was associated with a 30% (HR: 0.70, 95% CI 0.60-0.80) risk reduction of ASCVD, with the subgroup analyses indicating that age and hypertension modified the association (P for interaction < 0.05). RCS analysis indicated a significant and linear relationship between eGDR and ASCVD incidence risk. CONCLUSION: eGDR level was negatively associated with incident ASCVD risk in a linear fashion among the general population. Our findings may contribute to preventive measures by improving ASCVD risk assessment.
Asunto(s)
Aterosclerosis , Biomarcadores , Glucemia , Resistencia a la Insulina , Humanos , Femenino , Masculino , Incidencia , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Resistencia a la Insulina/etnología , Medición de Riesgo , Glucemia/metabolismo , Aterosclerosis/etnología , Aterosclerosis/epidemiología , Aterosclerosis/diagnóstico , Aterosclerosis/sangre , Factores de Tiempo , Biomarcadores/sangre , Factores de Riesgo , Estados Unidos/epidemiología , Anciano de 80 o más Años , PronósticoRESUMEN
The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.
Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Ceras/metabolismoRESUMEN
Phthalates (PEs), such as di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) could cause reproductive and developmental toxicities, while human beings are increasingly exposed to them at low-doses. Phytochemical quercetin (Que) is a flavonoid that has estrogenic effect, anti-inflammatory and anti-oxidant effects. This study was conducted to assess the alleviative effect of Que. on male reproductive toxicity induced by the mixture of three commonly used PEs (MPEs) at low-dose in rats, and explore the underlying mechanism. Male rats were treated with MPEs (16 mg/kg/day) and/or Que. (50 mg/kg/d) for 91 days. The results showed that MPEs exposure caused male reproductive injuries, such as decreased serum sex hormones levels, abnormal testicular pathological structure, increased abnormal sperm rate and changed expressions of PIWIL1 and PIWIL2. Furthermore, MPEs also changed the expression of steroidogenic proteins in steroid hormone metabolism, including StAR, CYP11A1, CYP17A1, 17ß-HSD, CYP19A1. However, the alterations of these parameters were reversed by Que. MPEs caused male reproductive injuries in rats; Que. inhibited MPEs' male reproductive toxicity, which might relate to the improvement of testosterone biosynthesis.
Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Testosterona , Ratas Sprague-Dawley , Semen/metabolismo , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Testículo , Dietilhexil Ftalato/toxicidad , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacologíaRESUMEN
BACKGROUND: Microplastics, widely present in the environment, are implicated in disease pathogenesis through oxidative stress and immune modulation. Prevailing research, primarily based on animal and cell studies, falls short in elucidating microplastics' impact on human cardiovascular health. This cross-sectional study detected blood microplastic concentrations in patients presenting with chest pain using pyrolysis-gas chromatography/mass spectrometry and evaluating inflammatory and immune markers through flow cytometry, to explore the potential effects of microplastic on acute coronary syndrome. RESULTS: The study included 101 participants, comprising 19 controls and 82 acute coronary syndrome cases. Notably, acute coronary syndrome patients exhibited elevated microplastic concentrations, with those suffering from acute myocardial infarction presenting higher loads compared to those with unstable angina. Furthermore, patients at intermediate to high risk of coronary artery disease displayed significantly higher microplastic accumulations than their low-risk counterparts. A significant relationship was observed between increased microplastic levels and enhanced IL-6 and IL-12p70 contents, alongside elevated B lymphocyte and natural killer cell counts. CONCLUSION: These results suggest an association between microplastics and both vascular pathology complexity and immunoinflammatory response in acute coronary syndrome, underscoring the critical need for targeted research to delineate the mechanisms of this association. HIGHLIGHTS: 1 Blood microplastic levels escalate from angiographic patency, to angina patients, peaking in myocardial infarction patients. 2 Microplastics in acute coronary syndrome patients are predominantly PE, followed by PVC, PS, and PP. 3 Microplastics may induce immune cell-associated inflammatory responses in acute coronary syndrome patients.
Asunto(s)
Síndrome Coronario Agudo , Microplásticos , Humanos , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/inducido químicamente , Masculino , Persona de Mediana Edad , Femenino , Microplásticos/toxicidad , Estudios Transversales , Anciano , Factores de Riesgo , Estudios de Casos y Controles , Aterosclerosis/sangre , Aterosclerosis/inducido químicamente , Biomarcadores/sangre , AdultoRESUMEN
Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de la Membrana/genética , Hojas de la Planta/genética , Estomas de Plantas/genética , Ácido Abscísico/metabolismo , Aniones/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/ultraestructura , Brachypodium/genética , Brachypodium/ultraestructura , Dióxido de Carbono/metabolismo , Microscopía por Crioelectrón , Transporte Iónico/genética , Proteínas de la Membrana/ultraestructura , Fosforilación/genética , Hojas de la Planta/ultraestructura , Estomas de Plantas/ultraestructura , Conformación Proteica , Transducción de Señal/genéticaRESUMEN
Phthalates (PEs) are widely used plasticizers in polymer products, and humans are increasingly exposed to them. This study was designed to investigate the alleviative effect of phytochemicals quercetin (Que) against male reproductive toxicity caused by the mixture of three commonly used PEs (MPEs), and further to explore the underlying mechanism. Forty-eight male SD rats were randomly and evenly divided into control group, Que group, MPEs group and MPEs+Que group (n = 12); The oral exposure doses of MPEs and Que were 450 mg/kg/d and 50 mg/kg/d, respectively. After 91 days of continuous intervention, compared with control group, the testes weight, epididymis weight, serum sex hormones, and anogenital distance were significantly decreased in MPEs group (P < 0.05); Testicular histopathological observation showed that all seminiferous tubules were atrophy, leydig cells were hyperplasia, spermatogenic cells growth were arrested in MPEs group. Ultrastructural observation of testicular germ cells showed that the edges of the nuclear membranes were indistinct, and the mitochondria were severely damaged with the cristae disrupted, decreased or even disappeared in MPEs group. Immunohistochemistry and Western blot analysis showed that testicular CYP11A1, CYP17A1 and 17ß-HSD were up-regulated, while StAR, PIWIL1 and PIWIL2 were down-regulated in MPEs group (P < 0.05); However, the alterations of these parameters were restored in MPEs+Que group. The results indicated MPEs disturbed steroid hormone metabolism, and caused male reproductive injuries; whereas, Que could inhibit MPEs' male reproductive toxicity, which might relate to the restored regulation of steroid hormone metabolism.
Asunto(s)
Ácidos Ftálicos , Quercetina , Testículo , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Ratas Sprague-Dawley , Hormonas Esteroides Gonadales/metabolismo , Esteroides/metabolismo , Testosterona , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacologíaRESUMEN
Fusarium pseudograminearum is an important plant pathogen that invades many crops (Zhang et al. 2018). Since it was first discovered in Australia in 1951, F. pseudograminearum has been reported in many countries and regions and caused huge economic losses (Burgess et al. 2001). In 2012, crown rot of wheat caused by F. pseudograminearum was discovered for the first time in Henan Province, China (Li et al. 2012). Wheat (Triticum aestivum L.) is one of the most important food crops in Xinjiang Uygur Autonomous Region (XUAR), with 1.07 million hectares cultivated in 2020. In June 2023, a survey of crown rot disease was carried out in winter wheat cv. Xindong 20 in Hotan area, XUAR, China (80.148907°E, 37.051474°N). About 5% of wheat plants showed symptoms of crown rot such as browning of the stem base and white head. The disease was observed in 85% of wheat fields. In order to identify the pathogens, 36 pieces of diseased stem basal tissue, 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, then rinsed three times with sterile water and placed on potato dextrose agar (PDA) medium at 25°C. A total of 27 isolates with consistent morphological characteristics were obtained using single-spore technique (Leslie and Summerell. 2006), and the isolation rate was 75%. The isolates grew rapidly on PDA, produced large numbers of fluffy white hyphae, and pink pigment accumulated in the medium. The isolates were grown on 2% mung bean flour medium and identified by morphological and molecular methods. Macroconidia were abundant, relatively slender, curved to almost straight, commonly two to seven septate, and averaged 22 to 72 × 1.8 to 4.9 µm. Microconidia were not observed. The morphological characters are consistent with Fusarium (Aoki and O'Donnell. 1999). Two isolates (LP-1 and LP-3) were selected for molecular identification. Primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') were used to amplify a portion of the EF-1α gene (O'Donnell et al. 1998). The two 696 bp PCR products were sequenced and submitted to GenBank. The EF-1α gene sequences (GenBank Accession No: PP062794 and PP062795) shared 99.9% identity (695/696) with published F.pseudograminearum sequences (e.g., OP105187, OP105184, OP105179, OP105173). The identification was further confirmed by F. pseudograminearum species-specific PCR primers Fp1-1/Fp1-2 (Aoki and O'Donnell. 1999). The expected PCR products of 518 bp were produced only in F. pseudograminearum. Pathogenicity tests of LP-1 and LP-3 isolates were performed on 7-day-old seedlings of winter wheat cv. Xindong 20 using the drip inoculation method with a 10-µl of a 106 macroconidia ml-1 suspension near the stem base (Xu et al. 2017). The experiment was repeated five times in a 20 to 25°C greenhouse. Control seedlings were treated with sterile water. After 4 weeks, wheat seedling death and crown browning occurred in the inoculated plants with over 90% incidence. No symptoms were observed in the control plants. The pathogen was reisolated from the inoculated plants by the method described above and identified by morphological and PCR amplification using F. pseudograminearum species-specific primers Fp1-1/Fp1-2. No F. pseudograminearum was isolated from the control plants, fulfilling Koch's postulates. To our knowledge, this is the first report of F. pseudograminearum causing crown rot of winter wheat in XUAR of China. Since F. pseudograminearum can cause great damage to wheat, one of the most important food crops in China, necessary measures should be taken to prevent the spread of F. pseudograminearum to other regions.
RESUMEN
OBJECTIVE: Phthalates (PEs) could cause reproductive harm to males. A mixture of three widely used PEs (MPEs) was used to investigate the ameliorative effects of zinc (Zn) and vitamin E (VE) against male reproductive toxicity. METHODS: Fifty male SD rats were randomly divided into five groups (n = 10). Rats in MPEs group were orally treated with 160 mg/kg/d MPEs, while rats in MPEs combined Zn and/or VE groups were treated with 160 mg/kg/d MPEs plus 25 mg/kg/d Zn and/or 25 mg/kg/d VE. After intervention for 70 days, it's was measured of male reproductive organs' weight, histopathological observation of sperms and testes, serum hormones, PIWI proteins and steroidogenic proteins. RESULTS: Compared with control, anogenital distance, testes weight, epididymides weight, and sex hormones were significantly decreased, while the sperm malformation rate was markedly increased in MPEs group (p < .05); the testicular tissues were injured in MPEs group with disordered and decreased spermatids, and arrested spermatogenesis. PIWIL1, PIWIL2, StAR, CYP11A1 and CYP19A1 were down-regulated in MPEs group (p < .05). However, the alterations of these parameters were restored in MPEs combined Zn and/or VE groups (p < .05). CONCLUSION: Zn and/or VE improved steroid hormone metabolism, and inhibited MPEs' male reproductive toxicity.
Asunto(s)
Ácidos Ftálicos , Ratas Sprague-Dawley , Testículo , Vitamina E , Zinc , Animales , Masculino , Testículo/efectos de los fármacos , Testículo/patología , Vitamina E/farmacología , Ácidos Ftálicos/toxicidad , Espermatozoides/efectos de los fármacos , Ratas , Reproducción/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacosRESUMEN
Wheat (Triticum aestivum L.) is the predominant grain crop and plays a pivotal role in grain production in Xinjiang Uygur Autonomous Region (XUAR), China. Its cultivated area constitutes approximately half of the total sown area of grain crops in XUAR, with 1.14 million hectares in 2021. Fusarium crown rot (FCR) of wheat, caused by Fusarium culmorum (W.G. Smith) Sacc., is one of the most devastating soil-borne diseases known to seriously reduce grain yield (Ma et al. 2024; Saad et al. 2023). In 2016, FCR of wheat, caused by F. culmorum, was firstly identified in Henan Province, China (Li et al. 2016). In June 2023, during the investigation of FCR of wheat in Aksu Prefecture, XUAR, FCR on winter wheat (cv. Xindong 20) was found (82.761349°E, 41.612202°N). The grain-filling period for winter wheat in early June coincided with a period of high temperatures and water demand in Aksu Prefecture. Approximately 8% of the Xindong 20 wheat plants exhibited symptoms of white heads and browning at the stem base, with the disease present in 82% of the wheat fields surveyed. To identify the pathogens, 20 samples of diseased stem basal tissue, each 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, followed by three rinses with sterile water. These samples were then plated onto potato dextrose agar (PDA) medium at 25°C for 5 days. A total of 17 isolates with consistent morphological characteristics were obtained using single-spore technique, with an isolation rate of 85%. The isolated strains exhibited rapid growth on PDA, producing fluffy, pale-yellow hyphae, and accumulating a pale-yellow to dark red pigment on the bottom of the medium. On carnation leaf agar (CLA), these strains formed orange colonies due to the aggregation of a large number of macroconidia. The macroconidia were short and thick, with three to four septa and rounded apical cell, averaging 31.94 to 40.96 × 5.62 to 6.71 µm (Magnification of ×400). Microconidia were not observed. These morphological characters were consistent with those of F. culmorum (Leslie and Summerell. 2006). Two isolates (D-9 and D-11) were selected for molecular identification. The EF-1α gene fragment was amplified using primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') as previously described by O'Donnell et al. (1998). The two 665 bp PCR products were sequenced and submitted to GenBank (GenBank Accession No: PP763247 and PP763248) with 99. 7% identity to the published F. culmorum sequences (e.g., OP985478, OP985477, MG195126, KX702638). The molecular identification was further confirmed by F. culmorum species-specific PCR primers FcOIF/FcOIR (Nicholson et al. 1998). The expected PCR products of 553 bp were produced only in F. culmorum. Strains D-9 and D-11 were used to conduct the pathogenicity experiment on 7-day-old winter wheat (cv. Xindong 20) using drip in the lower stem inoculation method with a 10-µl of 106 macroconidia ml-1 suspension, and the control 7-day-old winter wheat were treated with sterile water (Xu et al. 2017). The experiments were replicated five times in a greenhouse at temperatures ranging from 20â to 25â. After 4 weeks, all inoculated wheat seedlings showed stem base browning or even death. No symptoms were observed on the control plants. The fungus was reisolated from all inoculated wheat plants by the method described above and identified by morphological and PCR amplification using F. culmorum species-specific primers FcOIF/FcOIR. No F. culmorum was isolated from the control wheat plants, fulfilling Koch's postulates. To the best of our knowledge, this is the first report of F.culmorum causing FCR on winter wheat in XUAR, China. Considering wheat is the predominant grain crop and plays a pivotal role in grain production in China, necessary measures should be taken to prevent the spread of F. culmorum to other regions.
RESUMEN
Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.
Asunto(s)
Movimiento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermedios , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLaRESUMEN
Before fertilization, sperms adhere to oviductal epithelium cells, and only a restrictive number of winner sperms can escape to reach the egg. To study the sperm escape behavior from the oviductal surface, we developed a microfluidic chip to fabricate an adhesive surface and to create a gradient of progesterone (P4) for mimicking the oviduct microenvironment in vivo. We identified three sperm motion patterns in such a microenvironmentâanchored spin, run-and-spin, and escaped mode. By using kinetic analysis, we verified the hypothesis that the responsive rotation energy anchored with the adhered sperm head determines whether the sperm is trapped or detaching, which is defined as the hammer flying strategy of successful escape after accumulating energy in the process of rotating. Intriguingly, this hammer-throw escaping is able to be triggered by the P4 biochemical stimulation. Our results revealed the tangled process of sperm escape before fertilization in the ingenious microfluidic system.
Asunto(s)
Biomimética , Semen , Humanos , Femenino , Masculino , Animales , Cinética , Espermatozoides , OviductosRESUMEN
Oxidized methylcytidines 5-hydroxymethyl-2'deoxycytidine (5hmdC) and 5-formy-2'deoxycytidine (5fdC) are deaminated by cytidine deaminase (CDA) into genome-toxic variants of uridine, triggering DNA damage and cell death. These compounds are promising chemotherapeutic agents for cancer cells that are resistant to pyrimidine derivative drugs, such as decitabine and cytarabine, which are inactivated by CDA. In our study, we found that cancer cells infected with mycoplasma exhibited a markedly increased sensitivity to 5hmdC and 5fdC, which was independent of CDA expression of cancer cells. In vitro biochemical assay showed that the homologous CDA protein from mycoplasma was capable of deaminating 5hmdC and 5fdC into their uridine form. Moreover, mycoplasma infection increased the sensitivity of cancer cells to 5hmdC and 5fdC, whereas administration of Tetrahydrouridine (THU) attenuated this effect, suggesting that mycoplasma CDA confers a similar effect as human CDA. As mycoplasma infection occurs in many primary tumors, our findings suggest that intratumoral microbes could enhance the tumor-killing effect and expand the utility of oxidized methylcytidines in cancer treatment.
Asunto(s)
Infecciones por Mycoplasma , Neoplasias , Humanos , Uridina , Tetrahidrouridina/farmacología , Citidina Desaminasa/genética , DesoxicitidinaRESUMEN
The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.
Asunto(s)
Mpox , Virus Vaccinia , Humanos , Movimiento Celular , Brotes de Enfermedades , Células EpitelialesRESUMEN
Background: Inflammation is essential in cardiovascular disease (CVD) development and progression. A novel inflammatory parameter, the systemic inflammation response index (SIRI), has been proven to predict cancer prognosis strongly. Little is known about the relationship between SIRI and outcomes in patients with ST-segment elevation myocardial infarction (STEMI). Methods: 1312 STEMI patients who underwent percutaneous coronary intervention (PCI) in Beijing Anzhen hospital from January 2019 to December 2021 were analyzed. SIRI was calculated as neutrophils × monocytes/lymphocytes. Our primary outcome was a 30-day major adverse event (MACE), including all-cause mortality, non-fatal myocardial infarction (MI), stroke, incident heart failure (HF), cardiogenic shock, and cardiac arrest. Results: Patients were stratified into four groups according to quartiles of SIRI: SIRI < 1.58 (n = 328), 1.58 ≤ SIRI < 3.28 (n = 328), 3.28 ≤ SIRI < 7.80 (n = 328), SIRI ≥ 7.80 (n = 328). Higher SIRI was associated with a higher incidence of the 30-day MACE. The rates of 30-day MACE were 6.1%, 8.8%, 12.8%, and 17.1% (p < 0.001) for the lowest SIRI quartile to the highest quartile, respectively. This association was consistent in the outcome of HF but no other components. Higher SIRI indicated higher 30-day MACE incidence in most participants except in those with very high inflammatory indicators. Subgroup analysis showed this correlation was consistent in various subgroups (p for interaction > 0.05). Conclusions: In patients with STEMI, higher SIRI indicated a higher incidence of 30-day MACE, except for those with very high inflammatory indicators. In most STEMI patients, SIRI might be a trustworthy indicator of short-term prognosis.
RESUMEN
Seven new polyketides, diphenyl ketone (1), diphenyl ketone glycosides (2-4), diphenyl ketone-diphenyl ether dimer (6), and anthraquinone-diphenyl ketone dimers (7 and 8), together with compound 5, were isolated from the psychrophilic fungus Pseudogymnoascus sp. OUCMDZ-3578 fermented at 16 °C and identified by spectroscopic analysis. The absolute configurations of 2-4 were determined by acid hydrolysis and 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization. The configuration of 5 was first determined by X-ray diffraction analysis. Compounds 6 and 8 showed the highest activity against amyloid beta (Aß42) aggregation with half-maximal inhibitory concentrations (IC50) of 0.10 and 0.18 µM, respectively. They also showed strong abilities to chelate with metal ions, especially iron, were sensitive to Aß42 aggregation induced by metal ions, and displayed depolymerizing activity. Compounds 6 and 8 show potential as leads for the treatment of Alzheimer's disease to prevent Aß42 aggregation.
Asunto(s)
Ascomicetos , Policétidos , Péptidos beta-Amiloides , Policétidos/farmacología , Policétidos/química , Ascomicetos/química , Compuestos de Bifenilo , Estructura MolecularRESUMEN
BACKGROUND: Phthalates (PEs), such as butyl benzyl phthalate, dibutyl phthalate and di(2-ethylhexyl) phthalate, are one of the most widely used plasticizers, and humans are increasingly exposed to them. Phytochemical quercetin (Que) is a typical flavonoid with several biological effects, such as antioxidative and anti-inflammatory. The present study was designed to explore the effect of Que on testicular toxicity caused by the mixture of three commonly used PEs (MPEs), and the underlying mechanism. Forty male Sprague-Dawley rats were randomly and equally divided into five groups (n = 8). Rats in control the group were orally treated with the excipient. Rats in the MPEs group were orally administered with 900 mg kg-1 day-1 MPEs, whereas rats in the MPEs+L-Que, MPEs+M-Que and MPEs+H-Que groups were simultaneously treated with 900 mg kg-1 day-1 MPEs and, respectively, 10, 30 and 90 mg kg-1 day-1 Que for 30 days. RESULTS: Compared with the control group, the testes weight, epididymides weight, serum testosterone, luteinizing hormone, follicle-stimulating hormone and estradiol levels, and anogenital distance in the MPEs group were significantly decreased (P < 0.05). The testicular tissues were injured with atrophy of seminiferous tubules, hyperplasia of Leydig cells and arrest of spermatogenesis in the MPEs group. Testicular steroidogenic proteins (StAR, P450scc, CYP17A1 and 17ß-HSD, P450arom) were up-regulated, whereas P-element-induced wimpy testis proteins (PIWIL1 and PIWIL2) were down-regulated in the MPEs group (P < 0.05). However, the alterations of these parameters were inhibited in the MPEs+M-Que and MPEs+H-Que groups. CONCLUSION: MPEs disturbed steroid hormone metabolism and caused testicular injuries. Que could inhibit testicular toxicity of MPEs, which might relate to the improved regulation of steroid hormone metabolism. © 2022 Society of Chemical Industry.
Asunto(s)
Dietilhexil Ftalato , Testículo , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Quercetina/metabolismo , Testosterona , Ratas Sprague-Dawley , Dietilhexil Ftalato/metabolismo , Dietilhexil Ftalato/farmacología , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacologíaRESUMEN
By resorting to the principle of remote activation, we herein demonstrate the first photoredox catalyzed (3+3) dipolar cycloaddition of nitrones with aryl cyclopropanes. Key to the fidelity of the reaction resides in a facile manner of substrate activation by single-electron transfer (SET) oxidation with photoredox catalysis, and the reaction takes place through a stepwise cascade encompassing a three-electron-type nucleophilic substitution triggered cyclopropane ring-opening and a diastereoselective 6-endo-trig radical cyclization manifold. The reaction proceeds under mild conditions with excellent regio- and stereoselectivity, nicely complementing the well-developed Lewis acid catalyzed cycloaddition of donor-acceptor cyclopropanes. Other merits of the protocol include wide scope of aryl cyclopropanes with diversified substitution patterns and good functional-group compatibility. A mechanism involving an aryl radical cation promoted remote activation mode was also proposed and supported by mechanistic experiments.
RESUMEN
Sulfation is an essential modification on biomolecules in living cells, and 3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is its unique and universal sulfate donor. Human PAPS synthases (PAPSS1 and 2) are the only enzymes that catalyze PAPS production from inorganic sulfate. Unexpectedly, PAPSS1 and PAPSS2 do not functional complement with each other, and abnormal function of PAPSS2 but not PAPSS1 leads to numerous human diseases including bone development diseases, hormone disorder and cancers. Here, we reported the crystal structures of ATP-sulfurylase domain of human PAPSS2 (ATPS2) and ATPS2 in complex with is product 5'-phosphosulfate (APS). We demonstrated that ATPS2 recognizes the substrates by using family conserved residues located on the HXXH and PP motifs, and achieves substrate binding and releasing by employing a non-conserved phenylalanine (Phe550) through a never observed flipping mechanism. Our discovery provides additional information to better understand the biological function of PAPSS2 especially in tumorigenesis, and may facilitate the drug discovery against this enzyme.