Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 359, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158709

RESUMEN

Infiltration of monocyte-derived macrophages plays a crucial role in cardiac remodeling and dysfunction. The serum and glucocorticoid-inducible protein kinase 3 (SGK3) is a downstream factor of PI3K signaling, regulating various biological processes via an AKT-independent signaling pathway. SGK3 has been implicated in cardiac remodeling. However, the contribution of macrophagic SGK3 to hypertensive cardiac remodeling remains unclear. A cardiac remodeling model was established by angiotensin II (Ang II) infusion in SGK3-Lyz2-CRE (f/f, +) and wild-type mice to assess the function of macrophagic SGK3. Additionally, a co-culture system of SGK3-deficient or wild-type macrophages and neonatal rat cardiomyocytes (CMs) or neonatal rat fibroblasts (CFs) was established to evaluate the effects of SGK3 and the underlying mechanisms. SGK3 levels were significantly elevated in both peripheral blood mononuclear cells and serum from patients with heart failure. Macrophage SGK3 deficiency attenuated Ang II-induced macrophage infiltration, myocardial hypertrophy, myocardial fibrosis, and mitochondrial oxidative stress. RNA sequencing suggested Ndufa13 as the candidate gene in the effect of SGK3 on Ang II-induced cardiac remolding. Downregulation of Ndufa13 in CMs and CFs prevented the suppression of cardiac remodeling caused by SGK3 deficiency in macrophages. Mechanistically, the absence of SGK3 led to a reduction in IL-1ß secretion by inhibiting the NLRP3/Caspase-1/IL-1ß pathway in macrophages, consequently suppressing upregulated Ndufa13 expression and mitochondrial oxidative stress in CMs and CFs. This study provides new evidence that SGK3 is a potent contributor to the pathogenesis of hypertensive cardiac remodeling, and targeting SGK3 in macrophages may serve as a potential therapy for cardiac remodeling.


Asunto(s)
Angiotensina II , Macrófagos , Miocitos Cardíacos , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas , Remodelación Ventricular , Animales , Angiotensina II/farmacología , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Transducción de Señal , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Ratones Noqueados , Células Cultivadas
2.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824548

RESUMEN

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Asunto(s)
Biocatálisis , Escherichia coli , Ácido Gálico , Ingeniería Metabólica , Ácido Gálico/metabolismo , Ácido Gálico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ácido Shikímico/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Biotransformación
3.
Handb Exp Pharmacol ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38554166

RESUMEN

Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.

4.
Biosci Biotechnol Biochem ; 87(11): 1373-1380, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37567780

RESUMEN

Benzylamine is a valuable intermediate in the synthesis of organic compounds such as curing agents and antifungal drugs. To improve the efficiency of benzylamine biosynthesis, we identified the enzymes involved in the multi-enzyme cascade, regulated the expression strength by using RBS engineering in Escherichia coli, and established a regeneration-recycling system for alanine. This is a cosubstrate, coupled to cascade reactions, which resulted in E. coli RARE-TP and can synthesize benzylamine using phenylalanine as a precursor. By optimizing the supply of cosubstrates alanine and ammonia, the yield of benzylamine produced by whole-cell catalysis was increased by 1.5-fold and 2.7-fold, respectively, and the final concentration reached 6.21 mM. In conclusion, we achieved conversion from l-phenylalanine to benzylamine and increased the yield through enzyme screening, expression regulation, and whole-cell catalytic system optimization. This demonstrated a green and sustainable benzylamine synthesis method, which provides a reference and additional information for benzylamine biosynthesis research.


Asunto(s)
Bencilaminas , Escherichia coli , Escherichia coli/metabolismo , Bencilaminas/metabolismo , Catálisis , Alanina/metabolismo
5.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688058

RESUMEN

The differential count of white blood cells (WBCs) can effectively provide disease information for patients. Existing stained microscopic WBC classification usually requires complex sample-preparation steps, and is easily affected by external conditions such as illumination. In contrast, the inconspicuous nuclei of stain-free WBCs also bring great challenges to WBC classification. As such, image enhancement, as one of the preprocessing methods of image classification, is essential in improving the image qualities of stain-free WBCs. However, traditional or existing convolutional neural network (CNN)-based image enhancement techniques are typically designed as standalone modules aimed at improving the perceptual quality of humans, without considering their impact on advanced computer vision tasks of classification. Therefore, this work proposes a novel model, UR-Net, which consists of an image enhancement network framed by ResUNet with an attention mechanism and a ResNet classification network. The enhancement model is integrated into the classification model for joint training to improve the classification performance for stain-free WBCs. The experimental results demonstrate that compared to the models without image enhancement and previous enhancement and classification models, our proposed model achieved a best classification performance of 83.34% on our stain-free WBC dataset.


Asunto(s)
Núcleo Celular , Colorantes , Humanos , Aumento de la Imagen , Leucocitos , Iluminación
6.
Biochem Biophys Res Commun ; 625: 38-45, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944362

RESUMEN

Glioma is a clinically heterogeneous disease with a poor prognosis. Berberine (BBR), as a multi-target anti-tumor alkaloid, has the ability to penetrate the blood-brain barrier and shows cytotoxicity to glioma cells. In previous studies, we demonstrated that berberine inhibits glioma cell proliferation by inhibiting mutant p53 protein and promoting mitochondrial damage. In addition, berberine has been shown to reduce collagen accumulation in pulmonary fibrosis, diabetic nephropathy and arthritis. However, its effect on collagen in cancer needs to be further elucidated. In this study, we proved that the collagen XI alpha 1 chain (COL11A1) is highly expressed in glioma cell lines and associated with migration and invasion of glioma cells. Knocking down COL11A1 caused decreased expression of MMPs. Berberine could inhibit the migration and invasion of glioma cells by suppressing the TGF-ß1/COL11A1 pathway and changes actin cytoskeleton arrangement. Nude mouse subcutaneous xenografts model also showed that berberine inhibited the expression of COL11A1 in vivo. Collectively, berberine that targets COL11A1 to inhibit glioma migration and invasion, may serve as a promising candidate for the development of anti-glioma drugs in the future.


Asunto(s)
Berberina , Glioma , Animales , Berberina/farmacología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colágeno/farmacología , Colágeno Tipo XI , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Ratones , Ratones Desnudos , Factor de Crecimiento Transformador beta1/metabolismo
7.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889356

RESUMEN

Inspired by aquaphotomics, the optical path length of measurement was regarded as a perturbation factor. Near-infrared (NIR) spectroscopy with multi-measurement modals was applied to the discriminant analysis of three categories of drinking water. Moving window-k nearest neighbor (MW-kNN) and Norris derivative filter were used for modeling and optimization. Drawing on the idea of game theory, the strategy for two-category priority compensation and three-model voting with multi-modal fusion was proposed. Moving window correlation coefficient (MWCC), inter-category and intra-category MWCC spectra, and k-shortest distances plotting with MW-kNN were proposed to evaluate weak differences between two spectral populations. For three measurement modals (1 mm, 4 mm, and 10 mm), the optimal MW-kNN models, and two-category priority compensation models were determined. The joint models for three compensation models' voting were established. Comprehensive discrimination effects of joint models were better than their sub-models; multi-modal fusion was better than single-modal fusion. The best joint model was the dual-modal fusion of compensation models of one- and two-category priority (1 mm), one- and three-category priority (10 mm), and two- and three-category priority (1 mm), validation's total recognition accuracy rate reached 95.5%. It fused long-wave models (1 mm, containing 1450 nm) and short-wave models (10 mm, containing 974 nm). The results showed that compensation models' voting and multi-modal fusion can effectively improve the performance of NIR spectral pattern recognition.


Asunto(s)
Política , Espectroscopía Infrarroja Corta , Análisis por Conglomerados , Análisis Discriminante , Espectroscopía Infrarroja Corta/métodos
8.
Cancer Cell Int ; 21(1): 492, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530814

RESUMEN

BACKGROUND: Toosendanin (TSN) is a triterpenoid compound mainly used as an ascaris repellant. Recent studies have shown that it possesses antitumor effects in many types of tumor cells. However, the effects of TSN on glioma cells have rarely been reported. METHODS: Different assays were performed to investigate the effects of TSN on the different glioma cell lines including U87MG and LN18. The assays included colony formation, wound healing, and transwell assays. Furthermore, Hoechst 33342 staining, flow cytometry, and western blotting analysis were performed to investigate the apoptotic activities of TSN. Finally, the results were confirmed using a xenograft tumor model that comprised of nude mice. RESULTS: In vitro, the CCK-8 and colony formation assays showed that TSN effectively inhibited glioma cell proliferation. Moreover, the inhibitory effects on glioma cell migration and invasion were demonstrated through the wound healing and transwell assays, respectively. Hoechst 33342 staining, flow cytometry, and western blotting assays demonstrated the significant effect of TSN in the apoptosis induction of glioma cells. Furthermore, the anti-glioma effect of TSN was exerted through the inhibition of the PI3K/Akt/mTOR signaling pathways as demonstrated by western blotting analysis. In addition, the effects of TSN on glioma cell viability, apoptosis, cell cycle arrest, migration, and invasion were reversed by 740Y-P, a PI3K activator. Finally, the mouse xenograft model confirmed the suppressive effect of TSN on tumor growth in vivo. CONCLUSION: Our results suggest that TSN is a promising chemotherapeutic drug for patients with glioma.

9.
J Craniofac Surg ; 32(3): 940-943, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290332

RESUMEN

ABSTRACT: Mixed reality (MR) merges virtual information into the real world through computer technology, in which the real environment and virtual objects can get spliced in the same image or space at real time so that it can effectively express and integrate the virtual and real worlds and allow high feedback interaction. This technology combines the many advantages of virtual realityand augmented reality, and has a promising future in the medical field. At present, MR technology is just at the beginning stage in the medical field in the world, whose application in neurosurgery is also rarely reported. Given this, the authors described the research progress of MR in neurosurgery including preoperative planning and intraoperative guidance, doctor-patient communication, teaching rounds, physician training, and so on.


Asunto(s)
Realidad Aumentada , Neurocirugia , Humanos , Procedimientos Neuroquirúrgicos
10.
Int J Obes (Lond) ; 44(8): 1743-1752, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32494035

RESUMEN

INTRODUCTION: Fetal overgrowth, termed fetal macrosomia when birth weight is >4000 g, is the major concern in the treatment of gestational diabetes mellitus (GDM). However, to date, the underlying mechanisms of fetal macrosomia have not been understood completely. Placental lipid metabolism is emerging as a critical player in fetal growth. In this study, we hypothesized that fatty-acid transport and metabolism in the placental tissue is impaired in GDM women, dependent on fetal sex. METHODS: To test this hypothesis, we analyzed the incidence of GDM, fetal macrosomia, and obesity in a large cohort consisting of 17,995 pregnant subjects and majority of subjects being Hispanic/Latinx, and investigated expression of genes related to lipid transport and metabolism in placentas from obese women with or without GDM, and with or without fetal macrosomia. RESULTS: The main findings include: (1) there was a higher incidence of GDM and obesity in Hispanic subjects compared with non-Hispanic subjects, but not fetal macrosomia; (2) expressions of most of genes related to placental lipid transport and metabolism were not altered by the presence of GDM, fetal macrosomia, or fetal sex; (3) expression of FABP4 was increased in obese women with GDM and fetal macrosomia, and this occurred in male placentas; (4) expression of LPL was decreased in obese women with GDM despite fetal macrosomia, and this occurred in male placentas; (5) expression of ANGPTL3 was decreased in obese women with GDM and fetal macrosomia, but was not altered when fetal sex was included in the analysis. CONCLUSIONS: This study indicates that there is race disparity in GDM with higher incidence of GDM in obese Hispanic women, although fetal macrosomia disparity is not present. Moreover, altered placental lipid transport may contribute to fetal overgrowth in obese women with GDM.


Asunto(s)
Macrosomía Fetal/epidemiología , Metabolismo de los Lípidos , Obesidad/metabolismo , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/metabolismo , Diabetes Gestacional/epidemiología , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Hispánicos o Latinos , Humanos , Embarazo , Texas
11.
Reproduction ; 159(2): 133-144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31917674

RESUMEN

Menstruation is a specific physiological phenomenon that occurs in women. However, molecular mechanisms underlying this phenomenon are still unclear. According to the classical theory, tissue hypoxia resulting from vasoconstriction of the spiral arteries after progesterone (P4) withdrawal initiates the breakdown of the endometrium at the earliest stage of menstruation. However, this theory has been challenged by previous studies that have questioned the function and even the existence of hypoxia during menstruation. In this study, we not only provide convincing evidence that hypoxia exists during endometrial breakdown, but also further explore the role of hypoxia and hypoxia-inducible factor 1 (HIF1) in this process. Based on mouse menstrual-like model and experiments with human decidual stromal cells, we observed that P4 withdrawal induced both hypoxia and HIF1 activation; however, endometrial breakdown was triggered only by P4 withdrawal. Hypoxia significantly enhanced the mRNA expression of specific matrix metalloproteinases (MMPs) under the conditions of P4 withdrawal. In conclusion, hypoxia is involved but not an essential component of endometrial breakdown during menstruation.


Asunto(s)
Hipoxia de la Célula/fisiología , Endometrio/fisiología , Menstruación/fisiología , Animales , Decidua/citología , Endometrio/irrigación sanguínea , Endometrio/química , Femenino , Expresión Génica/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Metaloproteinasas de la Matriz/genética , Ratones , Modelos Animales , Progesterona/administración & dosificación , Progesterona/fisiología , Vasoconstricción
12.
Adv Exp Med Biol ; 1265: 111-131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32761573

RESUMEN

Amino acids are not only the building blocks of proteins, an indispensable component of cells, but also play versatile roles in regulating cell metabolism, proliferation, differentiation and growth by themselves or through their derivatives. At the whole body level, the bioavailability and metabolism of amino acids, interacting with other macronutrients, is critical for the physiological processes of reproduction including gametogenesis, fertilization, implantation, placentation, fetal growth and development. In fertilization and early pregnancy, histotroph in oviductal and uterine secretions provides nutrients and microenvironment for conceptus (embryo and extraembryonic membranes) development. These nutrients include select amino acids in histotroph (arginine, leucine and glutamine of particular interest) that stimulate conceptus growth and development, as well as interactions between maternal uterus and the conceptus, thus impacting maintenance of pregnancy, placental growth, development and functions, fetal growth and development, and consequential pregnancy outcomes. Gestational protein undernutrition causes fetal growth restriction and predisposes cardiovascular, metabolic diseases and others in offspring via multiple mechanisms, whereas the supplementation of glycine, leucine and taurine during pregnancy partially rescues growth restriction and beneficially modulates fetal programming. Thus, amino acids are essential for the fertility of humans and all animals.


Asunto(s)
Aminoácidos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Reproducción/fisiología , Animales , Implantación del Embrión , Femenino , Desarrollo Fetal , Humanos , Embarazo , Útero/metabolismo
13.
Angew Chem Int Ed Engl ; 59(10): 4068-4074, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31854064

RESUMEN

Atherosclerosis (AS) is a major contributor to cardiovascular diseases worldwide, and alleviating inflammation is a promising strategy for AS treatment. Here, we report molecularly engineered M2 macrophage-derived exosomes (M2 Exo) with inflammation-tropism and anti-inflammatory capabilities for AS imaging and therapy. M2 Exo are derived from M2 macrophages and further electroporated with FDA-approved hexyl 5-aminolevulinate hydrochloride (HAL). After systematic administration, the engineered M2 Exo exhibit excellent inflammation-tropism and anti-inflammation effects via the surface-bonded chemokine receptors and the anti-inflammatory cytokines released from the anti-inflammatory M2 macrophages. Moreover, the encapsulated HAL can undergo intrinsic biosynthesis and metabolism of heme to generate anti-inflammatory carbon monoxide and bilirubin, which further enhance the anti-inflammation effects and finally alleviate AS. Meanwhile, the intermediate protoporphyrin IX (PpIX) of the heme biosynthesis pathway permits the fluorescence imaging and tracking of AS.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Aterosclerosis/tratamiento farmacológico , Hemo/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Tropismo/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/química , Aterosclerosis/metabolismo , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Hemo/biosíntesis , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
14.
Reproduction ; 157(2): 149-161, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601756

RESUMEN

Stress impacts the reproductive axis at the level of the hypothalamus and the pituitary gland, which exert an effect on the ovary. Menstruation is regulated by the hypothalamic-pituitary-ovary (HPO) axis. However, the role of stress in menstruation remains unclear. The objective of this study was to explore the role of stress in endometrial breakdown and shedding, using the pseudopregnant mouse menstrual-like model. Female mice were mated with vasectomized males and labeled day 0.5, upon observation of a vaginal seminal plug. On day 3.5, decidualization was induced in pseudopregnant mice using arachis oil. On day 5.5, pseudopregnant mice with artificial decidualization were placed in restraint tubes for 3 h. The findings indicated that acute restraint stress resulted in the disintegration of the endometrium. While corticosterone concentration in the serum increased significantly due to restraint stress, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and progesterone (P4) levels in the serum decreased significantly. An endometrial histology examination indicated that progesterone implants may rescue P4 decline caused by acute stress and block endometrium breakdown and shedding. In addition, mice were treated with metyrapone, an inhibitor of corticosterone synthesis, 1 h prior to being subjected to restraint stress. Interestingly, metyrapone not only inhibited stress-induced endometrium breakdown and shedding, but also prevented stress-induced reduction of P4, LH and FSH. Furthermore, real-time PCR and western blot showed that mRNA and protein expression of CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and steroidogenic acute regulatory protein (StAR), the two rate-limiting enzymes for progesterone synthesis in the ovary, decreased following acute stress. But metyrapone prevented the reduction of StAR expression induced by restraint stress. Overall, this study revealed that acute stress results in an increase in corticosterone, which may inhibit LH and FSH release in the serum and CYP11A1 and StAR expression in the ovary, which finally leads to the breakdown and shedding of the endometrium. These experimental findings, based on the mouse model, may enable further understanding of the effects of stress on menstruation regulation and determine the potential factors affecting stress-associated menstrual disorders.


Asunto(s)
Corticosterona/sangre , Endometrio/patología , Progesterona/sangre , Estrés Fisiológico/fisiología , Estrés Psicológico/patología , Animales , Endometrio/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Metirapona/farmacología , Ratones , Progesterona/farmacología , Restricción Física
15.
Vet Res ; 49(1): 100, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30286809

RESUMEN

Novel compounds and more efficient treatment options are urgently needed for the treatment of cystic echinococcosis (CE), which is caused by Echinococcus granulosus. The decoction of Sophora moorcroftiana (Fabaceae) has been used to treat parasitosis for years in traditional Tibetan medicine. The aim of this study was to screen insecticidal water-soluble alkaloids from S. moorcroftiana seeds and evaluate the therapeutic effects against CE and the immune response induced by the alkaloidal fraction. Low polarity compounds (E2-a) were isolated from water-soluble alkaloid (E2) and matrine and sophocarpine were identified as major components. The E2-a fraction was more effective against protoscoleces than other constituents from S. moorcroftiana. After 20 weeks of secondary infection with protoscoleces, mice were orally treated with E2-a (100 mg/kg/day) for 6 weeks to evaluate therapeutic and immunoregulatory activities. Compared with the untreated group, E2-a treatment induced a significant reduction in cyst weight (mean 2.93 g) (p < 0.05) and an impaired ultrastructural modification of the cyst. Interestingly, the application of E2-a resulted in a significant increased frequency of CD3+CD4+ T-cell subsets and decreased frequency of CD3+PD-1+ T-cell subsets, compared with protoscolece-infected mice without treatment. The E2-a fraction of S. moorcroftiana can inhibit the cyst development of CE and boost the specific immune response by reducing the expression of PD-1 and accelerate the cytokine secretion of antigen-specific T-cells. All data suggest the E2-a fraction from S. moorcroftiana seeds may be used as a new potential therapeutic option against E. granulosus infection.


Asunto(s)
Alcaloides/farmacología , Anticestodos/farmacología , Equinococosis/tratamiento farmacológico , Echinococcus granulosus/efectos de los fármacos , Extractos Vegetales/farmacología , Sophora/química , Animales , Equinococosis/virología , Femenino , Ratones , Semillas/química , Organismos Libres de Patógenos Específicos
16.
Med Sci Monit ; 24: 2583-2589, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29701200

RESUMEN

BACKGROUND Quercetin is a natural bioactive flavonoid that is present in a wide variety of vegetables and fruits and exhibits a promising anti-metastasis property in various human cancer cells. However, the effect of quercetin on human HCCLM3 cells is unclear. MATERIAL AND METHODS In the current study, a wound-healing assay was performed using quercetin-treated HCCLM3 cells to further explore whether quercetin affects the motility of human HCCLM3 cells. Transwell assay was used to explore the potential effect of quercetin in HCCLM3 cells on cell migration and cell invasion. Western blotting analysis was used to explore the expression of p-Akt1, MMP-2, and MMP-9 in quercetin-treated HCCLM3 cells. RESULTS The wound-healing time was delayed in quercetin-treated HCCLM3 cells, and the ability to migrate and invade was inhibited in quercetin-treated human HCCLM3 cells. Moreover, the protein levels of p-Akt1, MMP-2, and MMP-9 were down-regulated in quercetin-treated HCCLM3 cells, as detected by Western blotting. CONCLUSIONS Our data show that quercetin attenuated cell migration and invasion by suppressing the protein levels of p-Akt1, MMP-2, and MMP-9 in HCCLM3 cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quercetina/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Inhibidores de la Metaloproteinasa de la Matriz/metabolismo , Metaloproteinasas de la Matriz/efectos de los fármacos , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/uso terapéutico
17.
J Ind Microbiol Biotechnol ; 45(1): 53-60, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196893

RESUMEN

Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61-0.67 mol (mole glucose)-1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)-1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)-1 and productivity of 0.38 g L-1 h-1.


Asunto(s)
Ácidos Dicarboxílicos/metabolismo , Escherichia coli/metabolismo , Alcohol Deshidrogenasa/genética , Carbono/metabolismo , Escherichia coli/genética , Fumarato Hidratasa/genética , Glucosa/metabolismo , L-Lactato Deshidrogenasa/genética , Lactococcus lactis/enzimología , Malatos/metabolismo , Ingeniería Metabólica , Mutación , Ácido Succínico/metabolismo
18.
Biol Reprod ; 97(4): 627-635, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025046

RESUMEN

Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring.


Asunto(s)
Dieta con Restricción de Proteínas , Proteínas en la Dieta/farmacología , Insulina/metabolismo , Animales , Arginina/farmacología , Glucemia/efectos de los fármacos , Proteínas en la Dieta/administración & dosificación , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa , Gliburida/farmacología , Resistencia a la Insulina , Islotes Pancreáticos/efectos de los fármacos , Cloruro de Potasio/farmacología , Embarazo , Deficiencia de Proteína/metabolismo , Ratas , Ratas Wistar
19.
J Cell Biochem ; 117(9): 2138-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26887372

RESUMEN

Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Apoptosis , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/metabolismo , Daño del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ingravidez , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa de Punto de Control 2/genética , Ratones , Antígeno Nuclear de Célula en Proliferación/genética , Factor 2 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor de Transcripción ReIA/genética , Proteína p53 Supresora de Tumor/genética , Enzimas Ubiquitina-Conjugadoras/genética
20.
Surg Radiol Anat ; 38(5): 541-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26691918

RESUMEN

PURPOSE: The primary purpose of our work was to make anatomical measurements of pterygoid canal (PC) and palatovaginal canal (PVC). The secondary goal was to locate the two structures based on the landmarks in the trans-sphenoidal surgery and draw a safe corridor of fenestration in the bottom of sphenoid sinus during surgical procedure to sphenopalatine region. MATERIALS AND METHODS: Computed tomographic angiography (CTA) images of PC, PVC and sphenoid sinus in 200 adults were reviewed. Multiplanar reconstruction of the CT images was performed, and the anatomical features of the PC and PVC were studied in the coronal, sagittal, and axial planes. The length, diameter and direction of PC and PVC were measured in the plane through or perpendicular to them. The anterior and posterior opening of PC and PVC were identified by the surgical landmarks such as the middle lowest point of sellar floor, the sagittal midline and the bottom of the sphenoid sinus. RESULT: Both PC and PVC can be found and identified easily on CTA image, the shape and size of the PC and PVC were in agreement with those retrieved from previous literatures, the position of them can be located by the anatomical landmarks in sphenoid sinus. CONCLUSION: Knowing the anatomical features of PC and PVC and their location based on the anatomical landmarks are helpful to the endoscopic trans-sphenoidal surgery. These data in our study will provide surgeons a better understanding of PC and PVC and their relationship to sphenoid sinus. Notably, it will not help the surgeons to avoid injuring neurovascular structures as well as provided supportive information for the choice of the appropriate endoscopic equipment.


Asunto(s)
Hueso Esfenoides/anatomía & histología , Hueso Esfenoides/diagnóstico por imagen , Seno Esfenoidal/anatomía & histología , Seno Esfenoidal/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Angiografía por Tomografía Computarizada , Endoscopía/instrumentación , Endoscopía/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Seno Esfenoidal/cirugía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA