Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 23(1): 192-197, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36594477

RESUMEN

The development of integrated circuits (ICs) based on a complementary metal-oxide-semiconductor through transistor scaling has reached the technology bottleneck; thus, alternative approaches from new physical mechanisms are highly demanded. Valleytronics in two-dimensional (2D) material systems has recently emerged as a strong candidate, which utilizes the valley degree of freedom to process information for electronic applications. However, for all-electrical valleytronic transistors, very low room-temperature "valley on-off" ratios (around 10) have been reported so far, which seriously limits their practical applications. In this work, we successfully illustrated both n- and p-type valleytronic transistor performances in monolayer MoS2 and WSe2 devices, with measured "valley on-off" ratios improved up to 3 orders of magnitude greater compared to previous reports. Our work shows a promising way for the electrically controllable manipulation of valley degree of freedom toward practical device applications.

2.
Phys Rev Lett ; 129(24): 247401, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563256

RESUMEN

A moiré superlattice in transition metal dichalcogenides heterostructure provides an exciting platform for studying strongly correlated electronics and excitonic physics, such as multiple interlayer exciton (IX) energy bands. However, the correlations between these IXs remain elusive. Here, we demonstrate the cascade transitions between IXs in a moiré superlattice by performing energy- and time-resolved photoluminescence measurements in the MoS_{2}/WSe_{2} heterostructure. Furthermore, we show that the lower-energy IX can be excited to higher-energy ones, facilitating IX population inversion. Our finding of cascade transitions between IXs contributes to the fundamental understanding of the IX dynamics in moiré superlattices and may have important applications, such as in exciton condensate, quantum information protocols, and quantum cascade lasers.

3.
Phys Rev Lett ; 125(15): 153602, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095609

RESUMEN

Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.

4.
Small ; 15(29): e1803339, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30370590

RESUMEN

It is highly desirable to employ n-type polymers as electron transporting layers (ETLs) in inverted perovskite solar cells (PSCs) due to their good electron mobility, high hydrophobicity, and simplicity of film forming. In this research, the capability of three n-type donor-acceptor1 -donor-acceptor2 (D-A1 -D-A2 ) conjugated polymers (pBTT, pBTTz, and pSNT) is first explored as ETLs because these polymers possess electron mobilities as high as 0.92, 0.46, and 4.87 cm2 (Vs)-1 in n-channel organic transistors, respectively. The main structural difference among pBTT, pBTTz, and pSNT is the position of sp2 -nitrogen atoms (sp2 -N) in the polymer main chains. Therefore, the effect of different substitution positions on the PSC performances is comprehensively studied. The as-fabricated p-i-n PSCs with pBTT, pBTTz, and pSNT as ETLs show the maximum photoconversion efficiencies of 12.8%, 14.4%, and 12.0%, respectively. To be highlighted, pBTTz-based device can maintain 80% of its stability after ten days due to its good hydrophobicity, which is further confirmed by a contact angle technique. More importantly, the pBTTz-based device shows a neglected hysteresis. This study reveals that the n-type polymers can be promising candidates as ETLs to approach solution-processed highly-efficient inverted PSCs.

5.
Phys Rev Lett ; 123(3): 033602, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31386483

RESUMEN

Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the resonance fluorescence. Here, we demonstrate that by a controlled gating using a weak nonresonant laser, the resonant fluorescence can be recovered and amplified for single germanium vacancies. Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of germanium vacancy centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid-state quantum networks.

6.
Nature ; 482(7386): 489-94, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22358838

RESUMEN

Scalable quantum computing can be achieved only if quantum bits are manipulated in a fault-tolerant fashion. Topological error correction--a method that combines topological quantum computation with quantum error correction--has the highest known tolerable error rate for a local architecture. The technique makes use of cluster states with topological properties and requires only nearest-neighbour interactions. Here we report the experimental demonstration of topological error correction with an eight-photon cluster state. We show that a correlation can be protected against a single error on any quantum bit. Also, when all quantum bits are simultaneously subjected to errors with equal probability, the effective error rate can be significantly reduced. Our work demonstrates the viability of topological error correction for fault-tolerant quantum information processing.

7.
Phys Rev Lett ; 112(11): 116802, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702401

RESUMEN

Single-shot readout of individual qubits is typically the slowest process among the elementary single- and two-qubit operations required for quantum information processing. Here, we use resonance fluorescence from a single-electron charged quantum dot to read out the spin-qubit state in 800 nanoseconds with a fidelity exceeding 80%. Observation of the spin evolution on longer time scales reveals quantum jumps of the spin state: we use the experimentally determined waiting-time distribution to characterize the quantum jumps.

8.
Natl Sci Rev ; 11(6): nwad103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725935

RESUMEN

Non-centrosymmetric topological material has attracted intense attention due to its superior characteristics as compared with the centrosymmetric one, although probing the local quantum geometry in non-centrosymmetric topological material remains challenging. The non-linear Hall (NLH) effect provides an ideal tool to investigate the local quantum geometry. Here, we report a non-centrosymmetric topological phase in ZrTe5, probed by using the NLH effect. The angle-resolved and temperature-dependent NLH measurement reveals the inversion and ab-plane mirror symmetries breaking at <30 K, consistently with our theoretical calculation. Our findings identify a new non-centrosymmetric phase of ZrTe5 and provide a platform to probe and control local quantum geometry via crystal symmetries.

9.
Heliyon ; 10(7): e28629, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590883

RESUMEN

Objectives: The present study was conducted to explore the performance of micronutrients in the prediction and prevention of coronavirus disease 2019 (COVID-19). Methods: This is an observational case-control study. 149 normal controls (NCs) and 214 COVID-19 patients were included in this study. Fat-soluble and water-soluble vitamins were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and inorganic elements were detected by inductively coupled plasma-mass spectrometry (ICP-MS) analysis. A logistic regression model based on six micronutrients were constructed using DxAI platform. Results: Many micronutrients were dysregulated in COVID-19 compared to normal control (NC). 25-Hydroxyvitamin D3 [25(OH)D3], magnesium (Mg), copper (Cu), calcium (Ca) and vitamin B6 (pyridoxic acid, PA) were significantly independent risk factors for COVID-19. The logistic regression model consisted of 25(OH)D3, Mg, Cu, Ca, vitamin B5 (VB5) and PA was developed, and displayed a strong discriminative capability to differentiate COVID-19 patients from NC individuals [area under the receiver operating characteristic curve (AUROC) = 0.901]. In addition, the model had great predictive ability in discriminating mild/normal COVID-19 patients from NC individuals (AUROC = 0.883). Conclusions: Our study showed that micronutrients were associated with COVID-19, and our logistic regression model based on six micronutrients has potential in clinical management of COVID-19, and will be useful for prediction of COVID-19 and screening of high-risk population.

10.
Proc Natl Acad Sci U S A ; 107(49): 20869-74, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21098305

RESUMEN

In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.

11.
Emerg Microbes Infect ; 12(2): 2225638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37313604

RESUMEN

From December 2022 to January 2023, SARS-CoV-2 infections caused by BA.5 and BF.7 subvariants of B.1.1.529 (Omicron) spread in China. It is urgently needed to evaluate the protective immune responses in the infected individuals against the current circulating variants to predict the future potential infection waves, such as the BQ.1.1, XBB.1.5, and CH1.1 variants. In this study, we constructed a panel of pseudotyped viruses for SARS-CoV-2 for the past and current circulating variants, including D614G, Delta, BA.1, BA.5, BF.7, BQ.1.1, XBB.1.5 and CH.1.1. We investigated the neutralization sensitivity of these pseudotyped viruses to sera from individuals who had BA.5 or BF.7 breakthrough infections in the infection wave of last December in China. The mean neutralization ID50 against infected variants BA.5 and BF.7 are 533 and 444, respectively. The highest neutralizing antibody level was observed when tested against the D614G strain, with the ID50 of 742, which is about 1.52-folds higher than that against the BA.5/BF.7 variant. The ID50 for BA.1, Delta, and BQ.1.1 pseudotyped viruses were about 2-3 folds lower when compared to BA.5/BF.7. The neutralization activities of these serum samples against XBB.1.5 and CH.1.1 decreased 7.39-folds and 15.25-folds when compared to that against BA.5/BF.7. The immune escape capacity of these two variants might predict new infection waves in future when the neutralizing antibody levels decrease furtherly.


Asunto(s)
Infección Irruptiva , COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Neutralizantes , China/epidemiología , Anticuerpos Antivirales
12.
Front Immunol ; 14: 1143181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187741

RESUMEN

Background: Secondary hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disease of immune hyperactivation that arises in the context of infectious, inflammatory, or neoplastic triggers. The aim of this study was to establish a predictive model for the timely differential diagnosis of the original disease resulting in HLH by validating clinical and laboratory findings to further improve the efficacy of therapeutics for HLH. Methods: We retrospectively enrolled 175 secondary HLH patients in this study, including 92 patients with hematologic disease and 83 patients with rheumatic disease. The medical records of all identified patients were retrospectively reviewed and used to generate the predictive model. We also developed an early risk score using multivariate analysis weighted points proportional to the ß regression coefficient values and calculated its sensitivity and specificity for the diagnosis of the original disease resulting in HLH. Results: The multivariate logistic analysis revealed that lower levels of hemoglobin and platelets (PLT), lower levels of ferritin, splenomegaly and Epstein-Barr virus (EBV) positivity were associated with hematologic disease, but young age and female sex were associated with rheumatic disease. The risk factors for HLH secondary to rheumatic diseases were female sex [OR 4.434 (95% CI, 1.889-10.407), P =0.001], younger age [OR 6.773 (95% CI, 2.706-16.952), P<0.001], higher PLT level [OR 6.674 (95% CI, 2.838-15.694), P<0.001], higher ferritin level [OR 5.269 (95% CI, 1.995-13.920), P =0.001], and EBV negativity [OR 27.656 (95% CI, 4.499-169.996), P<0.001]. The risk score included assessments of female sex, age, PLT count, ferritin level and EBV negativity, which can be used to predict HLH secondary to rheumatic diseases with an AUC of 0.844 (95% CI, 0.836~0.932). Conclusion: The established predictive model was designed to help clinicians diagnose the original disease resulting in secondary HLH during routine practice, which might be improve prognosis by enabling the timely treatment of the underlying disease.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Enfermedades Reumáticas , Humanos , Femenino , Masculino , Linfohistiocitosis Hemofagocítica/etiología , Linfohistiocitosis Hemofagocítica/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Estudios Retrospectivos , Enfermedades Reumáticas/complicaciones
13.
Nat Commun ; 13(1): 6191, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261426

RESUMEN

Symmetries, quantum geometries and electronic correlations are among the most important ingredients of condensed matters, and lead to nontrivial phenomena in experiments, for example, non-reciprocal charge transport. Of particular interest is whether the non-reciprocal transport can be manipulated. Here, we report the controllable large non-reciprocal charge transport in the intrinsic magnetic topological insulator MnBi2Te4. The current direction relevant resistance is observed at chiral edges, which is magnetically switchable, edge position sensitive and stacking sequence controllable. Applying gate voltage can also effectively manipulate the non-reciprocal response. The observation and manipulation of non-reciprocal charge transport reveals the fundamental role of chirality in charge transport of MnBi2Te4, and pave ways to develop van der Waals spintronic devices by chirality engineering.

14.
Natl Sci Rev ; 9(12): nwac020, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36694799

RESUMEN

The second-order nonlinear Hall effect observed in the time-reversal symmetric system has not only shown abundant physical content, but also exhibited potential application prospects. Recently, a third-order nonlinear Hall effect has been observed in MoTe2 and WTe2. However, few-layer MoTe2 and WTe2 are usually unstable in air and the observed third-order nonlinear Hall effect can be measured only at low temperature, which hinders further investigation as well as potential application. Thus, exploring new air-stable material systems with a sizable third-order nonlinear Hall effect at room temperature is an urgent task. Here, in type-II Weyl semimetal TaIrTe4, we observed a pronounced third-order nonlinear Hall effect, which can exist at room temperature and remain stable for months. The third-order nonlinear Hall effect is connected to the Berry-connection polarizability tensor instead of the Berry curvature. The possible mechanism of the observation of the third-order nonlinear Hall effect in TaIrTe4 at room temperature has been discussed. Our findings will open an avenue towards exploring room-temperature nonlinear devices in new quantum materials.

15.
Proc Natl Acad Sci U S A ; 105(32): 11050-4, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18682562

RESUMEN

The fundamental unit for quantum computing is the qubit, an isolated, controllable two-level system. However, for many proposed quantum computer architectures, especially photonic systems, the qubits can be lost or can leak out of the desired two-level systems, posing a significant obstacle for practical quantum computation. Here, we experimentally demonstrate, both in the quantum circuit model and in the one-way quantum computer model, the smallest nontrivial quantum codes to tackle this problem. In the experiment, we encode single-qubit input states into highly entangled multiparticle code words, and we test their ability to protect encoded quantum information from detected 1-qubit loss error. Our results prove in-principle the feasibility of overcoming the qubit loss error by quantum codes.


Asunto(s)
Sistemas de Computación , Modelos Teóricos , Teoría Cuántica
16.
World J Emerg Med ; 12(1): 18-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505545

RESUMEN

BACKGROUND: A pandemic of coronavirus disease (COVID-19) has been declared by the World Health Organization (WHO) and caring for critically ill patients is expected to be at the core of battling this disease. However, little is known regarding an early detection of patients at high risk of fatality. METHODS: This retrospective cohort study recruited consecutive adult patients admitted between February 8 and February 29, 2020, to the three intensive care units (ICUs) in a designated hospital for treating COVID-19 in Wuhan. The detailed clinical information and laboratory results for each patient were obtained. The primary outcome was in-hospital mortality. Potential predictors were analyzed for possible association with outcomes, and the predictive performance of indicators was assessed from the receiver operating characteristic (ROC) curve. RESULTS: A total of 121 critically ill patients were included in the study, and 28.9% (35/121) of them died in the hospital. The non-survivors were older and more likely to develop acute organ dysfunction, and had higher Sequential Organ Failure Assessment (SOFA) and quick SOFA (qSOFA) scores. Among the laboratory variables on admission, we identified 12 useful biomarkers for the prediction of in-hospital mortality, as suggested by area under the curve (AUC) above 0.80. The AUCs for three markers neutrophil-to-lymphocyte ratio (NLR), thyroid hormones free triiodothyronine (FT3), and ferritin were 0.857, 0.863, and 0.827, respectively. The combination of two easily accessed variables NLR and ferritin had comparable AUC with SOFA score for the prediction of in-hospital mortality (0.901 vs. 0.955, P=0.085). CONCLUSIONS: Acute organ dysfunction combined with older age is associated with fatal outcomes in COVID-19 patients. Circulating biomarkers could be used as powerful predictors for the in-hospital mortality.

17.
Sci Adv ; 7(30)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34301603

RESUMEN

Photoluminescence (PL) from excitons serves as a powerful tool to characterize the optoelectronic property and band structure of semiconductors, especially for atomically thin two-dimensional transition metal dichalcogenide (TMD) materials. However, PL quenches quickly when the thickness of TMD materials increases from monolayer to a few layers, due to the change from direct to indirect band transition. Here, we show that PL can be recovered by engineering multilayer heterostructures, with the band transition reserved to be a direct type. We report emission from layer-engineered interlayer excitons from these multilayer heterostructures. Moreover, as desired for valleytronics devices, the lifetime, valley polarization, and valley lifetime of the generated interlayer excitons can all be substantially improved as compared with that in the monolayer-monolayer heterostructure. Our results pave the way for controlling the properties of interlayer excitons by layer engineering.

18.
Nat Nanotechnol ; 16(8): 869-873, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34168343

RESUMEN

Nonlinear responses in transport measurements are linked to material properties not accessible at linear order1 because they follow distinct symmetry requirements2-5. While the linear Hall effect indicates time-reversal symmetry breaking, the second-order nonlinear Hall effect typically requires broken inversion symmetry1. Recent experiments on ultrathin WTe2 demonstrated this connection between crystal structure and nonlinear response6,7. The observed second-order nonlinear Hall effect can probe the Berry curvature dipole, a band geometric property, in non-magnetic materials, just like the anomalous Hall effect probes the Berry curvature in magnetic materials8,9. Theory predicts that another intrinsic band geometric property, the Berry-connection polarizability tensor10, gives rise to higher-order signals, but it has not been probed experimentally. Here, we report a third-order nonlinear Hall effect in thick Td-MoTe2 samples. The third-order signal is found to be the dominant response over both the linear- and second-order ones. Angle-resolved measurements reveal that this feature results from crystal symmetry constraints. Temperature-dependent measurement shows that the third-order Hall response agrees with the Berry-connection polarizability contribution evaluated by first-principles calculations. The third-order nonlinear Hall effect provides a valuable probe for intriguing material properties that are not accessible at lower orders and may be employed for high-order-response electronic devices.

19.
Phys Rev Lett ; 105(12): 120402, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20867616

RESUMEN

We experimentally demonstrate an advanced linear-optical programmable quantum processor that combines two elementary single-qubit programmable quantum gates. We show that this scheme enables direct experimental probing of quantum commutation relations for Pauli operators acting on polarization states of single photons. Depending on a state of two-qubit program register, we can probe either commutation or anticommutation relations. Very good agreement between theory and experiment is observed, indicating high-quality performance of the implemented quantum processor.

20.
Phys Rev Lett ; 104(21): 210401, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20867078

RESUMEN

Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA