Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Perfusion ; 38(6): 1277-1287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35506656

RESUMEN

BACKGROUND: Previous studies proved that pyrin domain-containing protein 3 (NLRP3)-induced pyroptosis plays an important role in Myocardial ischemia-reperfusion injury (MIRI). Insulin can inhibit the activation of NLRP3 inflammasome, although the exact mechanism remains unclear. The aim of this study was to determine whether insulin reduces NLRP3-induced pyroptosis by regulating pyruvate dehydrogenase E1alpha subunit (PDHA1) dephosphorylation during MIRI. METHODS: Rat hearts were subject to 30 min global ischemia followed by 60 min reperfusion, with or without 0.5 IU/L insulin. Myocardial ischemia-reperfusion injury was evaluated by measuring myocardial enzymes release, Cardiac hemodynamics, pathological changes, infarct size, and apoptosis rate. Cardiac aerobic glycolysis was evaluated by measuring ATP, lactic acid content, and pyruvate dehydrogenase complex (PDHc) activity in myocardial tissue. Recombinant adenoviral vectors for PDHA1 knockdown were constructed. Pyroptosis-related proteins were measured by Western blotting analysis, immunohistochemistry staining, and ELISA assay, respectively. RESULTS: It was found that insulin significantly reduced the area of myocardial infarction, apoptosis rate, and improved cardiac hemodynamics, pathological changes, energy metabolism. Insulin inhibits pyroptosis-induced inflammation during MIRI. Subsequently, Adeno-associated virus was used to knock down cardiac PDHA1 expression. Knockdown PDHA1 not only promoted the expression of NLRP3 but also blocked the inhibitory effect of insulin on NLRP3-mediated pyroptosis in MIRI. CONCLUSIONS: Results suggest that insulin protects against MIRI by regulating PDHA1 dephosphorylation, its mechanism is not only to improve myocardial energy metabolism but also to reduce the NLRP3-induced pyroptosis.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Insulina/farmacología , Inflamación
2.
World J Cardiol ; 14(5): 282-296, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35702326

RESUMEN

BACKGROUND: Heart failure is a health burden responsible for high morbidity and mortality worldwide, and dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. DCM is a disease of the heart muscle and is characterized by enlargement and dilation of at least one ventricle alongside impaired contractility with left ventricular ejection fraction < 40%. It is also associated with abnormalities in cytoskeletal proteins, mitochondrial ATP transporter, microvasculature, and fibrosis. However, the pathogenesis and potential biomarkers of DCM remain to be investigated. AIM: To investigate the candidate genes and pathways involved in DCM patients. METHODS: Two expression datasets (GSE3585 and GSE5406) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between the DCM patients and healthy individuals were identified using the R package "linear models for microarray data." The pathways with common DEGs were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses. Moreover, a protein-protein interaction network (PPI) was constructed to identify the hub genes and modules. The MicroRNA Database was applied to predict the microRNAs (miRNAs) targeting the hub genes. Additionally, immune cell infiltration in DCM was analyzed using CIBERSORT. RESULTS: In total, 97 DEGs (47 upregulated and 50 downregulated) were identified. GO analysis showed that the DEGs were mainly enriched in "response to growth factor," "extracellular matrix," and "extracellular matrix structural constituent." KEGG pathway analysis indicated that the DEGs were mainly enriched in "protein digestion and absorption" and "interleukin 17 (IL-17) signaling pathway." The PPI network suggested that collagen type III alpha 1 chain (COL3A1) and COL1A2 contribute to the pathogenesis of DCM. Additionally, visualization of the interactions between miRNAs and the hub genes revealed that hsa-miR-5682 and hsa-miR-4500 interacted with both COL3A1 and COL1A2, and thus these miRNAs might play roles in DCM. Immune cell infiltration analysis revealed that DCM patients had more infiltrated plasma cells and fewer infiltrated B memory cells, T follicular helper cells, and resting dendritic cells. CONCLUSION: COL1A2 and COL3A1 and their targeting miRNAs, hsa-miR-5682 and hsa-miR-4500, may play critical roles in the pathogenesis of DCM, which are closely related to the IL-17 signaling pathway and acute inflammatory response. These results may provide useful clues for the diagnosis and treatment of DCM.

3.
Front Cell Dev Biol ; 8: 581919, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123538

RESUMEN

BACKGROUND: The expression of progestin and adipoQ receptor 3 (PAQR3) is generally downregulated in multiple tumors, which is associated with tumor progression and poor prognosis. METHODS: The clinical value of PAQR3 was analyzed using various databases and in 60 patients with non-small cell lung cancer (NSCLC). In addition, cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the effect of PAQR3 on the growth of NSCLC cells in vitro. Gene set enrichment analysis (GSEA) was performed to investigate the possible mechanism through which PAQR3 is involved in the progression of lung cancer. Furthermore, western blotting was employed to verify the relevant mechanism. RESULTS: The expression of PAQR3 was decreased in 60 NSCLC patients and was related to the histological subtype, lymph node metastasis, tumor size, and diagnosis of NSCLC. Patients with lung adenocarcinoma with increased PAQR3 expression tended to have a better prognosis. Besides, PAQR3 inhibited proliferation, clone formation, and cycle transition in NSCLC cells, but induced apoptosis. The results of GSEA showed that PAQR3 regulated the progression of lung cancer by affecting cell cycle, DNA replication, and the p53 signaling pathway. We confirmed that PAQR3 overexpression inhibited the expression of NF-κB, while it increased the expression of p53, phospho-p53, and Bax. On the contrary, PAQR3 inhibition played an opposite role in these proteins. CONCLUSION: PAQR3 inhibited the growth of NSCLC cells through the NF-κB/P53/Bax signaling pathway and might be a new target for diagnosis and treatment.

4.
Front Genet ; 11: 242, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265985

RESUMEN

BACKGROUND: Upregulation of the six-transmembrane epithelial antigen of prostate-1 (STEAP1) is closely associated with prognosis of numerous malignant cancers. However, its role in lung adenocarcinoma (LUAD), the most common type of lung cancer, remains unknown. This study aimed to investigate the role of STEAP1 in the occurrence and progression of LUAD and the potential mechanisms underlying its regulatory effects. METHODS: STEAP1 mRNA and protein expression were analyzed in 40 LUAD patients via real-time PCR and western blotting, respectively. We accessed the clinical data of 522 LUAD patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate the expression and prognostic role of STEAP1 in LUAD. Further, we performed gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) to elucidate the potential mechanism underlying the role of STEAP1 in LUAD. The protein-protein interaction (PPI) network of STEAP1 was analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes with significant positive and negative associations with STEAP1 were identified and their role in LUAD prognosis was predicted. RESULTS: STEAP1 was significantly upregulated in LUAD patients and associated with LUAD prognosis. Further, TCGA data indicated that STEAP1 upregulation is correlated with the clinical prognosis of LUAD. GO and KEGG analysis revealed that the genes co-expressed with STEAP1 were primarily involved in cell division, DNA replication, cell cycle, apoptosis, cytokine signaling, NF-kB signaling, and TNF signaling. GSEA revealed that homologous recombination, p53 signaling pathway, cell cycle, DNA replication, apoptosis, and toll-like receptor signaling were highly enriched upon STEAP1 upregulation. Gene Expression Profiling Interactive Analysis (GEPIA) analysis revealed that the top 10 hub genes associated with STEAP1 expression were also associated with the LUAD prognosis. CONCLUSION: STEAP1 upregulation potentially influences the occurrence and progression of LUAD and its co-expressed genes via regulation of homologous recombination, p53 signaling, cell cycle, DNA replication, and apoptosis. STEAP1 is a potential prognostic biomarker for LUAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA