Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Cell Res ; 335(2): 207-15, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25999146

RESUMEN

Tissue inhibitors of metalloproteases (TIMPs) are multifunctional proteins that inhibit matrix metalloproteases (MMPs). The latest described member of the family, TIMP-4, is expressed mainly in adipose tissue, with detectable levels in the brain and heart. Besides its high expression in fat, the role of this inhibitor in adipose tissue is unknown. In order to study the role of TIMP-4 during adipogenesis in vitro, 3T3-L1 cells were stably transfected with a TIMP-4 specific shRNA or a control shRNA. Unexpectedly, upon TIMP-4 knockdown, 3T3-L1 cells differentiated faster into mature adipocytes. To get better insight of TIMP-4's role in adipogenesis, microarray expression analyses were performed. Network enrichment analyses uncovered 25 significant upstream signaling pathways, among which the NFκB cascade was found. Previous works have shown that NFκB is a key regulator of adipogenesis. In accordance, we found that TIMP-4 knockdown decreased NFκB activity during adipogenesis. The present work suggests that TIMP-4 might act as a negative regulator of adipogenesis through NFκB cascade modulation.


Asunto(s)
Adipogénesis , Inhibidores Tisulares de Metaloproteinasas/fisiología , Células 3T3-L1 , Adipocitos/fisiología , Animales , Técnicas de Silenciamiento del Gen , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Transcriptoma , Inhibidor Tisular de Metaloproteinasa-4
2.
Arch Microbiol ; 192(2): 103-14, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20035319

RESUMEN

Leptospira interrogans synthesizes a range of mannose-containing glycoconjugates relevant for its virulence. A prerequisite in the synthesis is the availability of the GDP-mannose, produced from mannose-1-phosphate and GTP in a reaction catalyzed by GDP-mannose pyrophosphorylase. The gene coding for a putative enzyme in L. interrogans was expressed in Escherichia coli BL21(DE3). The identity of this enzyme was confirmed by electrospray-mass spectroscopy, Edman sequencing and immunological assays. Gel filtration chromatography showed that the dimeric form of the enzyme is catalytically active and stable. The recombinant protein was characterized as a mannose-1-phosphate guanylyltransferase. S (0.5) for the substrates were determined both in GDP-mannose pyrophosphorolysis: 0.20 mM (GDP-mannose), 0.089 mM (PPi), and 0.47 mM; and in GDP-mannose synthesis: 0.24 mM (GTP), 0.063 mM (mannose-1-phosphate), and 0.45 mM (Mg(2+)). The enzyme was able to produce GDP-mannose, IDP-mannose, UDP-mannose and ADP-glucose. We obtained a structural model of the enzyme using as a template the crystal structure of mannose-1-phosphate guanylyltransferase from Thermus thermophilus HB8. Binding of substrates and cofactor in the model agree with the pyrophosphorylases reaction mechanism. Our studies provide insights into the structure of a novel molecular target, which could be useful for detection of leptospirosis and for the development of anti-leptospiral drugs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Leptospira interrogans/enzimología , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Western Blotting , Cromatografía en Gel , Guanosina Difosfato Manosa/metabolismo , Manosafosfatos/metabolismo , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Azúcares de Uridina Difosfato/metabolismo
3.
Biochimie ; 154: 176-186, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30223004

RESUMEN

Many oligo and polysaccharides (including paramylon) are critical in the Euglena gracilis life-cycle and they are synthesized by glycosyl transferases using UDP-glucose as a substrate. Herein, we report the molecular cloning of a gene putatively coding for a UDP-glucose pyrophosphorylase (EgrUDP-GlcPPase) in E. gracilis. After heterologous expression of the gene in Escherichia coli, the recombinant enzyme was characterized structural and functionally. Highly purified EgrUDP-GlcPPase exhibited a monomeric structure, able to catalyze synthesis of UDP-glucose with a Vmax of 3350 U.mg-1. Glucose-1P and UTP were the preferred substrates, although the enzyme also used (with lower catalytic efficiency) TTP, galactose-1P and mannose-1P. Oxidation by hydrogen peroxide inactivated the enzyme, an effect reversed by reduction with dithiothreitol or thioredoxin. The redox process would involve sulfenic acid formation, since no pair of the 7 cysteine residues is close enough in the 3D structure of the protein to form a disulfide bridge. Electrophoresis studies suggest that, after oxidation, the enzyme arranges in many enzymatically inactive structural conformations; which were also detected in vivo. Finally, confocal fluorescence microscopy provided evidence for a cytosolic (mainly in the flagellum) localization of the enzyme.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Euglena gracilis/enzimología , Glucanos/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Catálisis , Glucanos/metabolismo , Cinética , Dominios Proteicos , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
4.
Biochimie ; 93(2): 260-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20888387

RESUMEN

Amoebiasis is an intestinal infection caused by the human pathogen Entamoeba histolytica and representing the third leading cause of death by parasites in the world. Host-parasite interactions mainly involve anchored glycoconjugates localized in the surface of the parasitic cell. In protozoa, synthesis of structural oligo- and polysaccharides occurs via UDP-glucose, generated in a reaction catalyzed by UDP-glucose pyrophosphorylase. We report the molecular cloning of the gene coding for this enzyme from genomic DNA of E. histolytica and its recombinant expression in Escherichia coli cells. The purified enzyme was kinetically characterized, catalyzing UDP-glucose synthesis and pyrophosphorolysis with V(max) values of 95 U/mg and 3 U/mg, respectively, and affinity for substrates comparable to those found for the enzyme from other sources. Enzyme activity was affected by redox modification of thiol groups. Different oxidants, including diamide, hydrogen peroxide and sodium nitroprusside inactivated the enzyme. The process was completely reverted by reducing agents, mainly cysteine, dithiothreitol, and thioredoxin. Characterization of the enzyme mutants C94S, C108S, C191S, C354S, C378S, C108/378S, M106S and M106C supported a molecular mechanism for the redox regulation. Molecular modeling confirmed the role of specific cysteine and methionine residues as targets for redox modification in the entamoebic enzyme. Our results suggest that UDP-glucose pyrophosphorylase is a regulated enzyme in E. histolytica. Interestingly, results strongly agree with the occurrence of a physiological redox mechanism modulating enzyme activity, which would critically affect carbohydrate metabolism in the protozoon.


Asunto(s)
Entamoeba histolytica/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Clonación Molecular , Espacio Intracelular/enzimología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA