RESUMEN
Angiosarcomas are aggressive vascular sarcomas that arise from endothelial cells and have an extremely poor prognosis. Because of the rarity of angiosarcomas, knowledge of molecular drivers and optimized treatment strategies is lacking, highlighting the need for in vivo models to study the disease. Previously, we generated genetically engineered mouse models of angiosarcoma driven by aP2-Cre-mediated biallelic loss of Dicer1 or conditional activation of KrasG12D with Cdkn2a loss that histologically and genetically resemble human tumors. In the present study, we found that DICER1 functions as a potent tumor suppressor and its deletion, in combination with either KRASG12D expression or Cdkn2a loss, is associated with angiosarcoma development. Independent of the genetic driver, the mTOR pathway was activated in all murine angiosarcoma models. Direct activation of the mTOR pathway by conditional deletion of Tsc1 with aP2-Cre resulted in tumors that resemble intermediate grade human kaposiform hemangioendotheliomas, indicating that mTOR activation was not sufficient to drive the malignant angiosarcoma phenotype. Genetic dissection of the spectrum of vascular tumors identified genes specifically regulated in the aggressive murine angiosarcomas that are also enriched in human angiosarcoma. The genetic dissection driving the transition across the malignant spectrum of endothelial sarcomas provides an opportunity to identify key determinants of the malignant phenotype, novel therapies for angiosarcoma, and novel in vivo models to further explore angiosarcoma pathogenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Hemangiosarcoma , Neoplasias de los Tejidos Blandos , Animales , Carcinogénesis , Células Endoteliales/metabolismo , Hemangiosarcoma/genética , Hemangiosarcoma/patología , Integrasas , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Animales , Niño , Humanos , Ratones , Línea Celular Tumoral , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulación Neoplásica de la Expresión Génica , Músculo Esquelético/metabolismo , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Rabdomiosarcoma Alveolar/genéticaRESUMEN
PTEN promoter hypermethylation is nearly universal and PTEN copy number loss occurs in ~25% of fusion-negative rhabdomyosarcoma (FN-RMS). Here we show Pten deletion in a mouse model of FN-RMS results in less differentiated tumors more closely resembling human embryonal RMS. PTEN loss activated the PI3K pathway but did not increase mTOR activity. In wild-type tumors, PTEN was expressed in the nucleus suggesting loss of nuclear PTEN functions could account for these phenotypes. Pten deleted tumors had increased expression of transcription factors important in neural and skeletal muscle development including Dbx1 and Pax7. Pax7 deletion completely rescued the effects of Pten loss. Strikingly, these Pten;Pax7 deleted tumors were no longer FN-RMS but displayed smooth muscle differentiation similar to leiomyosarcoma. These data highlight how Pten loss in FN-RMS is connected to a PAX7 lineage-specific transcriptional output that creates a dependency or synthetic essentiality on the transcription factor PAX7 to maintain tumor identity.
Asunto(s)
Factor de Transcripción PAX7/metabolismo , Fosfohidrolasa PTEN/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Animales , Cruzamiento , Diferenciación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Integrasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Desarrollo de Músculos , Fosfohidrolasa PTEN/deficiencia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rabdomiosarcoma/genéticaRESUMEN
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.
Asunto(s)
Endotelio/metabolismo , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/genética , Rabdomiosarcoma/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Ratones Transgénicos , Músculo Esquelético/metabolismo , Transducción de SeñalRESUMEN
Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and histologically resembles developing skeletal muscle. Alveolar rhabdomyosarcoma (ARMS) is an aggressive subtype with a higher rate of metastasis and poorer prognosis. The majority of ARMS tumors (80%) harbor a PAX3-FOXO1 or less commonly a PAX7-FOXO1 fusion gene. The presence of either the PAX3-FOXO1 or PAX7-FOXO1 fusion gene foretells a poorer prognosis resulting in clinical re-classification as either fusion-positive (FP-RMS) or fusion-negative RMS (FN-RMS). The PAX3/7-FOXO1 fusion genes result in the production of a rogue transcription factors that drive FP-RMS pathogenesis and block myogenic differentiation. Despite knowing the molecular driver of FP-RMS, targeted therapies have yet to make an impact for patients, highlighting the need for a greater understanding of the molecular consequences of PAX3-FOXO1 and its target genes including microRNAs. Here we show FP-RMS patient-derived xenografts and cell lines display a distinct microRNA expression pattern. We utilized both loss- and gain-of function approaches in human cell lines with knockdown of PAX3-FOXO1 in FP-RMS cell lines and expression of PAX3-FOXO1 in human myoblasts and identified microRNAs both positively and negatively regulated by the PAX3-FOXO1 fusion protein. We demonstrate PAX3-FOXO1 represses miR-221/222 that functions as a tumor suppressing microRNA through the negative regulation of CCND2, CDK6, and ERBB3. In contrast, miR-486-5p is transcriptionally activated by PAX3-FOXO1 and promotes FP-RMS proliferation, invasion, and clonogenic growth. Inhibition of miR-486-5p in FP-RMS xenografts decreased tumor growth, illustrating a proof of principle for future therapeutic intervention. Therefore, PAX3-FOXO1 regulates key microRNAs that may represent novel therapeutic vulnerabilities in FP-RMS.
Asunto(s)
MicroARNs/genética , Neoplasias de los Músculos/genética , Proteínas de Fusión Oncogénica/fisiología , Factores de Transcripción Paired Box/fisiología , Rabdomiosarcoma Alveolar/genética , Animales , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Células Cultivadas , Niño , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones SCID , Análisis por Micromatrices , Neoplasias de los Músculos/patología , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma Alveolar/patologíaRESUMEN
Angiosarcoma is an aggressive vascular sarcoma with an extremely poor prognosis. Because of the relative rarity of this disease, its molecular drivers and optimal treatment strategies are obscure. DICER1 is an RNase III endoribonuclease central to miRNA biogenesis, and germline DICER1 mutations result in a cancer predisposition syndrome, associated with an increased risk of many tumor types. Here, we show that biallelic Dicer1 deletion with aP2-Cre drives aggressive and metastatic angiosarcoma independent of other genetically engineered oncogenes or tumor suppressor loss. Angiosarcomas in aP2-Cre;Dicer1Flox/- mice histologically and genetically resemble human angiosarcoma. miR-23 target genes, including the oncogenes Ccnd1 as well as Adam19, Plau, and Wsb1 that promote invasiveness and metastasis, were enriched in mouse and human angiosarcoma. These studies illustrate that Dicer1 can function as a traditional loss-of-function tumor suppressor gene, and they provide a fully penetrant animal model for the study of angiosarcoma development and metastasis. Cancer Res; 77(22); 6109-18. ©2017 AACR.
Asunto(s)
ARN Helicasas DEAD-box/genética , Predisposición Genética a la Enfermedad/genética , Hemangiosarcoma/genética , Mutación , Ribonucleasa III/genética , Animales , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Hemangiosarcoma/patología , Homocigoto , Humanos , Estimación de Kaplan-Meier , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genéticaRESUMEN
Rhabdomyosarcoma (RMS) is an aggressive skeletal muscle-lineage tumor composed of malignant myoblasts that fail to exit the cell cycle and are blocked from fusing into syncytial muscle. Rhabdomyosarcoma includes two histolopathologic subtypes: alveolar rhabdomyosarcoma, driven by the fusion protein PAX3-FOXO1 or PAX7-FOXO1, and embryonal rhabdomyosarcoma (ERMS), which is genetically heterogeneous. Here, we show that adipocyte-restricted activation of Sonic hedgehog signaling through expression of a constitutively active Smoothened allele in mice gives rise to aggressive skeletal muscle tumors that display the histologic and molecular characteristics of human ERMS with high penetrance. Our findings suggest that adipocyte progenitors can be a cell of origin for Sonic hedgehog-driven ERMS, showing that RMS can originate from nonskeletal muscle precursors.
Asunto(s)
Adipocitos/citología , Linaje de la Célula , Rabdomiosarcoma Embrionario/etiología , Tejido Adiposo/metabolismo , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Modelos Animales de Enfermedad , Proteínas Hedgehog/fisiología , Humanos , Ratones , Factor de Transcripción PAX7/fisiología , Rabdomiosarcoma Embrionario/patología , Transducción de Señal , Células Madre/citologíaRESUMEN
Lung cancer is the leading cause of cancer-related deaths in the world, and non-small-cell lung cancer (NSCLC) accounts for 80% of cases. MicroRNA-21 (miR-21) expression is increased and predicts poor survival in NSCLC. Although miR-21 function has been studied in vitro with cancer cell lines, the role of miR-21 in tumor development in vivo is unknown. We utilize transgenic mice with loss-of-function and gain-of-function miR-21 alleles combined with a model of NSCLC to determine the role of miR-21 in lung cancer. We show that overexpression of miR-21 enhances tumorigenesis and that genetic deletion of miR-21 partially protects against tumor formation. MiR-21 drives tumorigenesis through inhibition of negative regulators of the Ras/MEK/ERK pathway and inhibition of apoptosis.