Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 77, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806738

RESUMEN

Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.


Asunto(s)
Biodiversidad , Sedimentos Geológicos , Bacterias Grampositivas , ARN Ribosómico 16S , Sedimentos Geológicos/microbiología , México , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/genética , Bacterias Grampositivas/clasificación , ARN Ribosómico 16S/genética , Bioprospección , Filogenia , Antibacterianos/farmacología , Agua de Mar/microbiología
2.
Mar Drugs ; 21(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37623733

RESUMEN

Besides the importance of our oceans as oxygen factories, food providers, shipping pathways, and tourism enablers, oceans hide an unprecedented wealth of opportunities [...].


Asunto(s)
Computadores , Descubrimiento de Drogas , Alimentos , Oxígeno
3.
Mar Drugs ; 21(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37504950

RESUMEN

Marine environments represent an enormous biodiversity reservoir due to their numerous different habitats, being abundant in microorganisms capable of producing biomolecules, namely exopolysaccharides (EPS), with unique physical characteristics and applications in a broad range of industrial sectors. From a total of 67 marine-derived bacteria obtained from marine sediments collected at depths of 200 to 350 m from the Estremadura Spur pockmarks field, off the coast of Continental Portugal, the Brevundimonas huaxiensis strain SPUR-41 was selected to be cultivated in a bioreactor with saline culture media and glucose as a carbon source. The bacterium exhibited the capacity to produce 1.83 g/L of EPS under saline conditions. SPUR-41 EPS was a heteropolysaccharide composed of mannose (62.55% mol), glucose (9.19% mol), rhamnose (19.41% mol), glucuronic acid (4.43% mol), galactose (2.53% mol), and galacturonic acid (1.89% mol). Moreover, SPUR-41 EPS also revealed acyl groups in its composition, namely acetyl, succinyl, and pyruvyl. This study revealed the importance of research on marine environments for the discovery of bacteria that produce new value-added biopolymers for pharmaceutical and other biotechnological applications, enabling us to potentially address saline effluent pollution via a sustainable circular economy.


Asunto(s)
Biotecnología , Polisacáridos Bacterianos , Bacterias , Reactores Biológicos , Biopolímeros
4.
Mar Drugs ; 21(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37233502

RESUMEN

Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Bases de Datos Factuales , Metabolómica/métodos , Biología Computacional , Genómica
5.
Mar Drugs ; 21(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38132933

RESUMEN

Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.


Asunto(s)
Agelas , Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Poríferos , Animales , Humanos , Poríferos/química , Agelas/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo
6.
Mar Drugs ; 20(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35200658

RESUMEN

Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach comprising ligand- and structure-based methods was explored for predicting the antifouling activities of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules extracted from the ChEMBL database and literature with antifouling screening data were used to build the quantitative structure-activity relationship (QSAR) classification model. An overall predictive accuracy score of up to 71% was achieved with the best QSAR model for external and internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs from Encinar's website and 14 MNPs that are currently in the clinical pipeline was also carried out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs that were selected by the QSAR approach were used in molecular docking experiments against the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and pyridine derivatives.


Asunto(s)
Organismos Acuáticos , Incrustaciones Biológicas/prevención & control , Productos Biológicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Productos Biológicos/química , Inhibidores de la Colinesterasa/química , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
7.
Mar Drugs ; 20(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36547907

RESUMEN

Plastics are present in the majority of daily-use products worldwide. Due to society's production and consumption patterns, plastics are accumulating in the environment, causing global pollution issues and intergenerational impacts. Our work aims to contribute to the development of solutions and sustainable methods to mitigate this pressing problem, focusing on the ability of marine-derived actinomycetes to accelerate plastics biodegradation and produce polyhydroxyalkanoates (PHAs), which are biodegradable bioplastics. The thin plastic films' biodegradation was monitored by weight loss, changes in the surface chemical structure (Infra-Red spectroscopy FTIR-ATR), and by mechanical properties (tensile strength tests). Thirty-six marine-derived actinomycete strains were screened for their plastic biodegradability potential. Among these, Streptomyces gougerotti, Micromonospora matsumotoense, and Nocardiopsis prasina revealed ability to degrade plastic films-low-density polyethylene (LDPE), polystyrene (PS) and polylactic acid (PLA) in varying conditions, namely upon the addition of yeast extract to the culture media and the use of UV pre-treated thin plastic films. Enhanced biodegradation by these bacteria was observed in both cases. S. gougerotti degraded 0.56% of LDPE films treated with UV radiation and 0.67% of PS films when inoculated with yeast extract. Additionally, N. prasina degraded 1.27% of PLA films when these were treated with UV radiation, and yeast extract was added to the culture medium. The main and most frequent differences observed in FTIR-ATR spectra during biodegradation occurred at 1740 cm-1, indicating the formation of carbonyl groups and an increase in the intensity of the bands, which indicates oxidation. Young Modulus decreased by 30% on average. In addition, S. gougerotti and M. matsumotoense, besides biodegrading conventional plastics (LDPE and PS), were also able to use these as a carbon source to produce degradable PHA bioplastics in a circular economy concept.


Asunto(s)
Actinobacteria , Plásticos , Polietileno/metabolismo , Actinobacteria/metabolismo , Actinomyces/metabolismo , Biodegradación Ambiental , Biopolímeros , Poliésteres , Poliestirenos
8.
Mar Drugs ; 20(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35621941

RESUMEN

As the quest for marine-derived compounds with pharmacological and biotechnological potential upsurges, the importance of following regulations and applying Responsible Research and Innovation (RRI) also increases. This article aims at: (1) presenting an overview of regulations and policies at the international and EU level, while demonstrating a variability in their implementation; (2) highlighting the importance of RRI in biodiscovery; and (3) identifying gaps and providing recommendations on how to improve the market acceptability and compliance of novel Blue Biotechnology compounds. This article is the result of the work of the Working Group 4 "Legal aspects, IPR and Ethics" of the COST Action CA18238 Ocean4Biotech, a network of more than 130 Marine Biotechnology scientists and practitioners from 37 countries. Three qualitative surveys ("Understanding of the Responsible Research and Innovation concept", "Application of the Nagoya Protocol in Your Research", and "Brief Survey about the experiences regarding the Nagoya Protocol") indicate awareness and application gaps of RRI, the Nagoya Protocol, and the current status of EU policies relating to Blue Biotechnology. The article categorises the identified gaps into five main categories (awareness, understanding, education, implementation, and enforcement of the Nagoya Protocol) and provides recommendations for mitigating them at the European, national, and organisational level.


Asunto(s)
Biotecnología
9.
Mar Drugs ; 20(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35049876

RESUMEN

The Estremadura Spur pockmarks are a unique and unexplored ecosystem located in the North Atlantic, off the coast of Portugal. A total of 85 marine-derived actinomycetes were isolated and cultured from sediments collected from this ecosystem at a depth of 200 to 350 m. Nine genera, Streptomyces, Micromonospora, Saccharopolyspora, Actinomadura, Actinopolymorpha, Nocardiopsis, Saccharomonospora, Stackebrandtia, and Verrucosispora were identified by 16S rRNA gene sequencing analyses, from which the first two were the most predominant. Non-targeted LC-MS/MS, in combination with molecular networking, revealed high metabolite diversity, including several known metabolites, such as surugamide, antimycin, etamycin, physostigmine, desferrioxamine, ikarugamycin, piericidine, and rakicidin derivatives, as well as numerous unidentified metabolites. Taxonomy was the strongest parameter influencing the metabolite production, highlighting the different biosynthetic potentials of phylogenetically related actinomycetes; the majority of the chemical classes can be used as chemotaxonomic markers, as the metabolite distribution was mostly genera-specific. The EtOAc extracts of the actinomycete isolates demonstrated antimicrobial and antioxidant activity. Altogether, this study demonstrates that the Estremadura Spur is a source of actinomycetes with potential applications for biotechnology. It highlights the importance of investigating actinomycetes from unique ecosystems, such as pockmarks, as the metabolite production reflects their adaptation to this habitat.


Asunto(s)
Actinobacteria/metabolismo , Antibacterianos/farmacología , Actinobacteria/genética , Animales , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Organismos Acuáticos , Productos Biológicos , Línea Celular Tumoral/efectos de los fármacos , Ecosistema , Células HaCaT/efectos de los fármacos , Humanos , Metabolómica , Filogenia , Portugal
10.
Mar Drugs ; 18(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322052

RESUMEN

The investigation of marine natural products (MNPs) as key resources for the discovery of drugs to mitigate the COVID-19 pandemic is a developing field. In this work, computer-aided drug design (CADD) approaches comprising ligand- and structure-based methods were explored for predicting SARS-CoV-2 main protease (Mpro) inhibitors. The CADD ligand-based method used a quantitative structure-activity relationship (QSAR) classification model that was built using 5276 organic molecules extracted from the ChEMBL database with SARS-CoV-2 screening data. The best model achieved an overall predictive accuracy of up to 67% for an external and internal validation using test and training sets. Moreover, based on the best QSAR model, a virtual screening campaign was carried out using 11,162 MNPs retrieved from the Reaxys® database, 7 in-house MNPs obtained from marine-derived actinomycetes by the team, and 14 MNPs that are currently in the clinical pipeline. All the MNPs from the virtual screening libraries that were predicted as belonging to class A were selected for the CADD structure-based method. In the CADD structure-based approach, the 494 MNPs selected by the QSAR approach were screened by molecular docking against Mpro enzyme. A list of virtual screening hits comprising fifteen MNPs was assented by establishing several limits in this CADD approach, and five MNPs were proposed as the most promising marine drug-like leads as SARS-CoV-2 Mpro inhibitors, a benzo[f]pyrano[4,3-b]chromene, notoamide I, emindole SB beta-mannoside, and two bromoindole derivatives.


Asunto(s)
Organismos Acuáticos/química , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Diseño de Fármacos , Productos Biológicos/uso terapéutico , COVID-19/epidemiología , COVID-19/virología , Diseño Asistido por Computadora , Proteasas 3C de Coronavirus/metabolismo , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo
11.
Mar Drugs ; 18(1)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963732

RESUMEN

The undesired attachment of micro and macroorganisms on water-immersed surfaces, known as marine biofouling, results in severe prevention and maintenance costs (billions €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructures. To date, there are no sustainable, cost-effective and environmentally safe solutions to address this challenging phenomenon. Therefore, we investigated the antifouling activity of napyradiomycin derivatives that were isolated from actinomycetes from ocean sediments collected off the Madeira Archipelago. Our results revealed that napyradiomycins inhibited ≥80% of the marine biofilm-forming bacteria assayed, as well as the settlement of Mytilus galloprovincialis larvae (EC50 < 5 µg/ml and LC50/EC50 >15), without viability impairment. In silico prediction of toxicity end points are of the same order of magnitude of standard approved drugs and biocides. Altogether, napyradiomycins disclosed bioactivity against marine micro and macrofouling organisms, and non-toxic effects towards the studied species, displaying potential to be used in the development of antifouling products.


Asunto(s)
Actinobacteria/química , Incrustaciones Biológicas/prevención & control , Naftoquinonas/farmacología , Streptomyces/química , Animales , Acuicultura/métodos , Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Larva/efectos de los fármacos , Mytilus/efectos de los fármacos
12.
Mar Drugs ; 18(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291602

RESUMEN

The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.


Asunto(s)
Antineoplásicos/química , Organismos Acuáticos/química , Toxinas Marinas/química , Animales , Productos Biológicos , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Microbiología del Agua
13.
Environ Microbiol ; 21(3): 1099-1112, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30637904

RESUMEN

The search for new and effective strategies to reduce bacterial biofilm formation is of utmost importance as bacterial resistance to antibiotics continues to emerge. The use of anti-biofilm agents that can disrupt recalcitrant bacterial communities can be an advantageous alternative to antimicrobials, as their use does not lead to the development of resistance mechanisms. Six MAR4 Streptomyces strains isolated from the Madeira Archipelago, at the unexplored Macaronesia Atlantic ecoregion, were used to study the chemical diversity of produced hybrid isoprenoids. These marine actinomycetes were investigated by analysing their crude extracts using LC-MS/MS and their metabolomic profiles were compared using multivariate statistical analysis (principal component analysis), showing a separation trend closely related to their phylogeny. Molecular networking unveiled the presence of a class of metabolites not previously described from MAR4 strains and new chemical derivatives belonging to the napyradiomycin and marinone classes. Furthermore, these MAR4 strains produce metabolites that inhibit biofilm formation of Staphylococcus aureus and Marinobacter hydrocarbonoclasticus. The anti-biofilm activity of napyradiomycin SF2415B3 (1) against S. aureus was confirmed.


Asunto(s)
Streptomyces/química , Terpenos/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Cromatografía Liquida , Metabolómica , Filogenia , Staphylococcus aureus/efectos de los fármacos , Streptomyces/metabolismo , Espectrometría de Masas en Tándem , Terpenos/aislamiento & purificación
14.
Mar Drugs ; 17(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597893

RESUMEN

The risk of methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing in both the developed and developing countries. New approaches to overcome this problem are in need. A ligand-based strategy to discover new inhibiting agents against MRSA infection was built through exploration of machine learning techniques. This strategy is based in two quantitative structure⁻activity relationship (QSAR) studies, one using molecular descriptors (approach A) and the other using descriptors (approach B). In the approach A, regression models were developed using a total of 6645 molecules that were extracted from the ChEMBL, PubChem and ZINC databases, and recent literature. The performance of the regression models was successfully evaluated by internal and external validation, the best model achieved R² of 0.68 and RMSE of 0.59 for the test set. In general natural product (NP) drug discovery is a time-consuming process and several strategies for dereplication have been developed to overcome this inherent limitation. In the approach B, we developed a new NP drug discovery methodology that consists in frontloading samples with 1D NMR descriptors to predict compounds with antibacterial activity prior to bioactivity screening for NPs discovery. The NMR QSAR classification models were built using 1D NMR data (¹H and 13C) as descriptors, from crude extracts, fractions and pure compounds obtained from actinobacteria isolated from marine sediments collected off the Madeira Archipelago. The overall predictability accuracies of the best model exceeded 77% for both training and test sets.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Descubrimiento de Drogas/métodos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/química , Antibacterianos/farmacología , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana/métodos , Relación Estructura-Actividad Cuantitativa
15.
Environ Microbiol ; 19(9): 3660-3673, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28752948

RESUMEN

Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.


Asunto(s)
Vías Biosintéticas/genética , Micromonosporaceae/genética , Micromonosporaceae/metabolismo , Familia de Multigenes/genética , Metabolismo Secundario/genética , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Secuencia de Bases , Perfilación de la Expresión Génica , Genoma Bacteriano/genética , Islas Genómicas/genética , Genómica , Micromonosporaceae/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Agua
16.
Nat Prod Rep ; 32(6): 779-810, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25850681

RESUMEN

Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Humanos , Estructura Molecular
17.
Molecules ; 20(3): 4848-73, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25789820

RESUMEN

A Quantitative Structure-Activity Relationship (QSAR) approach for classification was used for the prediction of compounds as active/inactive relatively to overall biological activity, antitumor and antibiotic activities using a data set of 1746 compounds from PubChem with empirical CDK descriptors and semi-empirical quantum-chemical descriptors. A data set of 183 active pharmaceutical ingredients was additionally used for the external validation of the best models. The best classification models for antibiotic and antitumor activities were used to screen a data set of marine and microbial natural products from the AntiMarin database-25 and four lead compounds for antibiotic and antitumor drug design were proposed, respectively. The present work enables the presentation of a new set of possible lead like bioactive compounds and corroborates the results of our previous investigations. By other side it is shown the usefulness of quantum-chemical descriptors in the discrimination of biologically active and inactive compounds. None of the compounds suggested by our approach have assigned non-antibiotic and non-antitumor activities in the AntiMarin database and almost all were lately reported as being active in the literature.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Descubrimiento de Drogas/métodos , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Organismos Acuáticos/química , Productos Biológicos/química , Productos Biológicos/farmacología , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos/métodos , Aprendizaje Automático , Estructura Molecular , Relación Estructura-Actividad Cuantitativa
18.
Mar Drugs ; 12(2): 757-78, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24473174

RESUMEN

The comprehensive information of small molecules and their biological activities in the PubChem database allows chemoinformatic researchers to access and make use of large-scale biological activity data to improve the precision of drug profiling. A Quantitative Structure-Activity Relationship approach, for classification, was used for the prediction of active/inactive compounds relatively to overall biological activity, antitumor and antibiotic activities using a data set of 1804 compounds from PubChem. Using the best classification models for antibiotic and antitumor activities a data set of marine and microbial natural products from the AntiMarin database were screened-57 and 16 new lead compounds for antibiotic and antitumor drug design were proposed, respectively. All compounds proposed by our approach are classified as non-antibiotic and non-antitumor compounds in the AntiMarin database. Recently several of the lead-like compounds proposed by us were reported as being active in the literature.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Diseño de Fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Organismos Acuáticos/química , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas/métodos , Humanos , Informática/métodos , Relación Estructura-Actividad Cuantitativa
19.
Biotechnol Adv ; 71: 108307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185432

RESUMEN

Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Productos Biológicos/farmacología , Bioensayo/métodos
20.
ACS Sustain Chem Eng ; 11(27): 9989-10000, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37448722

RESUMEN

Marine biofouling negatively impacts industries with off-shore infrastructures, such as naval, oil, and aquaculture. To date, there are no ideal sustainable, economic, and environmentally benign solutions to deal with this phenomenon. The advances achieved in green solvents, as well as its application in different industries, such as pharmaceutical and biotechnology, have promoted the emergence of deep eutectic systems (DES). These eutectic systems have applications in various fields and can be revolutionary in the marine-based industrial sector. In this study, the main objective was to investigate the potential use of hydrophobic DES (HDES) based on menthol and natural organic acids for their use as marine antifouling coatings. Our strategy encompassed the physicochemical characterization of different formulations, which allowed us to identify the most appropriate molar ratio and intermolecular interactions for HDES formations. The miscibility of the resulting HDES with the marine coating has been evaluated and proven to be successful. The Men/OL (1:1) system proved to be the most promising in terms of cost-production and thus was the one used in subsequent antifouling tests. The cytotoxicity of this HDES was evaluated using an in vitro cell model (HaCat cells) showing no significant toxicity. Furthermore, the application of this system incorporated into coatings that are used in marine structures was also studied using marine species (Mytilus edulis mussels and Patella vulgata limpets) to evaluate both their antifouling and ecotoxicity effects. HDES Men/OL (1:1) incorporated in marine coatings was promising in reducing marine macrofouling and also proved to be effective at the level of microfouling without viability impairment of the tested marine species. It was revealed to be more efficient than using copper oxide, metallic copper, or ivermectin as antifouling agents. Biochemical assays performed on marine species showed that this HDES does not induce oxidative stress in the tested species. These results are a strong indication of the potential of this HDES to be sustainable and efficiently used in marine fouling control technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA