RESUMEN
Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.
RESUMEN
Antibodies are key immune effectors that confer protection against pathogenic threats. The nature and longevity of the antibody response to SARS-CoV-2 infection are not well defined. We charted longitudinal antibody responses to SARS-CoV-2 in 92 subjects after symptomatic COVID-19. Antibody responses to SARS-CoV-2 are unimodally distributed over a broad range, with symptom severity correlating directly with virus-specific antibody magnitude. Seventy-six subjects followed longitudinally to â¼100 days demonstrated marked heterogeneity in antibody duration dynamics. Virus-specific IgG decayed substantially in most individuals, whereas a distinct subset had stable or increasing antibody levels in the same time frame despite similar initial antibody magnitudes. These individuals with increasing responses recovered rapidly from symptomatic COVID-19 disease, harbored increased somatic mutations in virus-specific memory B cell antibody genes, and had persistent higher frequencies of previously activated CD4+ T cells. These findings illuminate an efficient immune phenotype that connects symptom clearance speed to differential antibody durability dynamics.
Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , COVID-19 , Inmunoglobulina G/inmunología , Activación de Linfocitos , Mutación , COVID-19/genética , COVID-19/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/inmunologíaRESUMEN
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation.
Asunto(s)
Complemento C3/antagonistas & inhibidores , Ojo/química , Anciano , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Inyecciones Intravítreas , Macaca fascicularis , Retina/química , Factores de Tiempo , Distribución TisularRESUMEN
Poxviruses display species tropism-variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is â¼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals.IMPORTANCE Vaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the complement classical pathway (CP). Because the virus encodes a soluble complement regulator, VCP, we examined whether this protein displays selectivity in targeting bovine CP. Our data show that it does exhibit selectivity in inhibiting the bovine CP and that this is primarily determined by its amino acids E108, E120, and E144, which interact with bovine serine protease factor I to inactivate bovine C4b-one of the two subunits of CP C3-convertase. Of note, the variola complement regulator SPICE contains positively charged residues at these positions. Thus, these variant residues in VCP help enhance its potency against the bovine CP and thereby the fitness of the virus in cattle.
Asunto(s)
Activación de Complemento/inmunología , Vía Alternativa del Complemento/inmunología , Vía Clásica del Complemento/inmunología , Proteínas de la Matriz Viral/inmunología , Proteínas Virales/inmunología , Tropismo Viral/genética , Secuencia de Aminoácidos , Animales , Bovinos , Proteína de Unión al Complemento C4b/inmunología , Fibrinógeno/metabolismo , Humanos , Alineación de Secuencia , Especificidad de la Especie , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Proteínas de la Matriz Viral/genética , Proteínas Virales/genéticaRESUMEN
The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi's sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b-Kaposica-factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA.
Asunto(s)
Complemento C3b/química , Factor I de Complemento/química , Herpesvirus Humano 8/química , Modelos Moleculares , Complejos Multiproteicos/química , Proteínas Virales/química , Complemento C3b/genética , Factor I de Complemento/genética , Herpesvirus Humano 8/genética , Humanos , Complejos Multiproteicos/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Virales/genéticaRESUMEN
The use of biomaterials in modern medicine has enabled advanced drug delivery strategies and led to reduced morbidity and mortality in a variety of interventions such as transplantation or hemodialysis. However, immune-mediated reactions still present a serious complication of these applications. One of the drivers of such reactions is the complement system, a central part of humoral innate immunity that acts as a first-in-line defense system in its own right but also coordinates other host defense responses. A major regulator of the complement system is the abundant plasma protein factor H (FH), which impairs the amplification of complement responses. Previously, we could show that it is possible to recruit FH to biomedical surfaces using the phage display-derived cyclic peptide 5C6 and, consequently, reduce deposition of C3b, an activation product of the complement system. However, the optimal orientation of 5C6 on surfaces, structural determinants within the peptide for the binding, and the exact binding region on FH remained unknown. Here, we show that the cyclic core and C-terminal region of 5C6 are essential for its interaction with FH and that coating through its N-terminus strongly increases FH recruitment and reduces C3-mediated opsonization in a microparticle-based assay. Furthermore, we could demonstrate that 5C6 selectively binds to FH but not to related proteins. The observation that 5C6 also binds murine FH raises the potential for translational evaluation in animal models. This work provides important insight for the future development of 5C6 as a probe or therapeutic entity to reduce complement activation on biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials have evolved into core technologies critical to biomedical and drug delivery applications alike, yet their safe and efficient use may be adversely impacted by immune responses to the foreign materials. Taking inspiration from microbial immune evasion strategies, our group developed a peptide-based surface coating that recruits factor H (FH), a host regulator of the complement system, from plasma to the material surface and prevents unwanted activation of this innate immunity pathway. In this study, we identified the molecular determinants that define the interaction between FH and the coated peptide, developed tethering strategies with largely enhanced binding capacity and provided important insight into the target selectivity and species specificity of the FH-binding peptide, thereby paving the way for preclinical development steps.
Asunto(s)
Complemento C3b , Factor H de Complemento , Animales , Ratones , Factor H de Complemento/química , Factor H de Complemento/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Materiales Biocompatibles/farmacología , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismoRESUMEN
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Asunto(s)
COVID-19 , Animales , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Key features of immune memory are greater and faster antigen-specific antibody responses to repeat infection. In the setting of immune-evading viral evolution, it is important to understand how far antibody memory recognition stretches across viral variants when memory cells are recalled to action by repeat invasions. It is also important to understand how immune recall influences longevity of secreted antibody responses. We analyzed SARS-CoV-2 variant recognition; dynamics of memory B cells; and secreted antibody over time after infection, vaccination, and boosting. We find that a two-dose SARS-CoV-2 vaccination regimen given after natural infection generated greater longitudinal antibody stability and induced maximal antibody magnitudes with enhanced breadth across Beta, Gamma, Delta and Omicron variants. A homologous third messenger RNA vaccine dose in COVID-naïve individuals conferred greater cross-variant evenness of neutralization potency with stability that was equal to the hybrid immunity conferred by infection plus vaccination. Within unvaccinated individuals who recovered from COVID, enhanced antibody stability over time was observed within a subgroup of individuals who recovered more quickly from COVID and harbored significantly more memory B cells cross-reactive to endemic coronaviruses early after infection. These cross-reactive clones map to the conserved S2 region of SARS-CoV-2 spike with higher somatic hypermutation levels and greater target affinity. We conclude that SARS-CoV-2 antigen challenge histories in humans influence not only the speed and magnitude of antibody responses but also functional cross-variant antibody repertoire composition and longevity.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , AnticuerposRESUMEN
Neutralizing antibodies that recognize the SARS-CoV-2 spike glycoprotein are the principal host defense against viral invasion. Variants of SARS-CoV-2 bear mutations that allow escape from neutralization by many human antibodies, especially those in widely distributed ("public") classes. Identifying antibodies that neutralize these variants of concern and determining their prevalence are important goals for understanding immune protection. To determine the Delta and Omicron BA.1 variant specificity of B cell repertoires established by an initial Wuhan strain infection, we measured neutralization potencies of 73 antibodies from an unbiased survey of the early memory B cell response. Antibodies recognizing each of three previously defined epitopic regions on the spike receptor binding domain (RBD) varied in neutralization potency and variant-escape resistance. The ACE2 binding surface ("RBD-2") harbored the binding sites of neutralizing antibodies with the highest potency but with the greatest sensitivity to viral escape; two other epitopic regions on the RBD ("RBD-1" and "RBD-3") bound antibodies of more modest potency but greater breadth. The structures of several Fab:spike complexes that neutralized all five variants of concern tested, including one Fab each from the RBD-1, -2, and -3 clusters, illustrated the determinants of broad neutralization and showed that B cell repertoires can have specificities that avoid immune escape driven by public antibodies. The structure of the RBD-2 binding, broad neutralizer shows why it retains neutralizing activity for Omicron BA.1, unlike most others in the same public class. Our results correlate with real-world data on vaccine efficacy, which indicate mitigation of disease caused by Omicron BA.1.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , SARS-CoV-2/genéticaRESUMEN
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutación/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del CoronavirusRESUMEN
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.
RESUMEN
Poxviruses are dangerous pathogens, which can cause fatal infection in unvaccinated individuals. The causative agent of smallpox in humans, variola virus, is closely related to the bovine vaccinia virus, yet the molecular basis of their selectivity is currently incompletely understood. Here, we examine the role of the electrostatics in the selectivity of the smallpox protein SPICE and vaccinia protein VCP toward the human and bovine complement protein C3b, a key component of the complement immune response. Electrostatic calculations, in-silico alanine-scan and electrostatic hotspot analysis, as introduced by Kieslich and Morikis (PLoS Comput. Biol. 2012), are used to assess the electrostatic complementarity and to identify sites resistant to local perturbation where the electrostatic potential is likely to be evolutionary conserved. The calculations suggest that the bovine C3b is electrostatically prone to selectively bind its VCP ligand. On the other hand, the human isoform of C3b exhibits a lower electrostatic complementarity toward its SPICE ligand. Yet, the human C3b displays a highly preserved electrostatic core, which suggests that this isoform could be less selective in binding different ligands like SPICE and the human Factor H. This is supported by experimental cofactor activity assays revealing that the human C3b is prone to bind both SPICE and Factor H, which exhibit diverse electrostatic properties. Additional investigations considering mutants of SPICE and VCP that revert their selectivity reveal an "electrostatic switch" into the central modules of the ligands, supporting the critical role of the electrostatics in the selectivity. Taken together, these evidences provide insights into the selectivity mechanism of the complement regulator proteins encoded by the variola and vaccinia viruses to circumvent the complement immunity and exert their pathogenic action. These fundamental aspects are valuable for the development of novel vaccines and therapeutic strategies.
RESUMEN
Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains that continue to fuel the COVID-19 pandemic despite intensive vaccination efforts throughout the world. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Mutations in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement can account for the increased transmissibility and risk of mortality as the variant may begin to infect efficiently infect additional cell types expressing low levels of ACE2. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, rendering complete resistance to some potent neutralizing antibodies. These findings provide structural details on how the wide spread of SARS-CoV-2 enables rapid evolution to enhance viral fitness and immune evasion. They may guide intervention strategies to control the pandemic.
RESUMEN
Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.
Asunto(s)
COVID-19/virología , Evasión Inmune , SARS-CoV-2/química , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.
RESUMEN
The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.
Asunto(s)
Evasión Inmune , Fusión de Membrana , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Antígenos Virales/inmunología , Línea Celular , Epítopos/inmunología , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Receptores de Coronavirus/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiologíaRESUMEN
Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.
RESUMEN
Gastrointestinal bleeding due to angiodysplasia is a common problem in patients with renal insufficiency. There are several theories to explain the increased occurrence of these lesions in this specific group of patients, including various metabolic factors and existence of comorbidities. Advancements made in diagnostic measures have helped route the approach in patients with different risk factors and have also helped solve the dual purpose involving therapeutic intervention with endoscopy. We conducted a thorough literature search on PubMed to extract relevant data. A total of 29 articles were chosen after applying the inclusion and exclusion criteria. Although the clinical presentations may vary in this cohort of patients, and bleeding is known to stop spontaneously, a conservative approach may not be enough. Endoscopic treatment, use of hormones like estrogen, octreotide, and vasopressin, arterial embolization, and lastly surgery are valuable therapeutic tools.
RESUMEN
Pancreatic cancer is historically known for representing a challenge for both diagnosis and treatment. Despite the advances in medicine, science, and technology, it remains the third leading cause of cancer-related deaths in the United States. The association between pancreatic cancer and major depression preceding the diagnosis is well known; however, it is still poorly understood, being considered an obscure piece of the puzzle the disease represents. It has been characterized as a paraneoplastic syndrome caused by the dysregulation of inflammatory cytokines, especially interleukin-6 (IL-6). Despite many types of studies describing the association, researchers have been reluctant to recommend it as a screening tool or early marker of the disease, mainly because of the non-specific nature of depression and anxiety in the studied patients. In this literature review, we aim to better understand the relationship between pancreatic cancer and major depression and characterize the immunologic mechanism of action behind the association.
RESUMEN
After approval, initial biologics etanercept, infliximab, and adalimumab became useful in the therapeutic armamentarium to treat rheumatoid arthritis (RA) patients who had an inadequate response to disease-modifying anti-rheumatic drugs (DMARDs). However, all phase-III clinical trials submitted to the FDA, by design, excluded patients who were human immunodeficiency virus (HIV) positive. They are another subset of patients with low immunity due to their HIV-positive status. Very little information is available about the use of biologics in this new group of patients if they fail to respond to DMARDS. The available literature is limited to case reports about HIV-positive RA patients with reported side effects. These side effects range from no opportunistic infections (OIs) in some to acute respiratory distress syndrome (ARDS) and disseminated intravascular coagulopathy (DIC) reported in others. Some HIV cases may initially present with rheumatological manifestations. With growing epidemiologic evidence of frequent joint manifestations in HIV-positive patients, HIV testing should be done more frequently in patients with RA, even those who deny risk factors for HIV. This review may help develop future guidelines on how to manage HIV-positive RA patients.