Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(25): 36663-36684, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750272

RESUMEN

The Orne River, a tributary of the Moselle River, was highly impacted by industrial activities for more than one century. Land use along the Orne River is highly contrasted, with local specificity from its source to its junction with the Moselle River. The intense industrial activity left behind tons of steelmaking wastes (SMW) on the land surface and within the Orne riverbed. To assess the sources of particulate Zn and Pb transported as suspended sediment in the Orne River, different sets of samples from likely Zn- and Pb-bearing particle sources within the Orne watershed were collected. Three sets of samples were taken from potential sources representing detrital, urban, and inherited industrial particles. Mineralogy, element contents, and Zn and Pb isotope compositions were obtained to characterize and reveal the fingerprint of each set of samples. Soil samples were collected on distinct geomorphological areas characterized by different soil types and land uses. They all display detrital minerals assigned to the geological background. Urban dusts and steelmaking residues display specific mineral phases (sulfates and iron oxides, respectively). Element compositions present strong discrepancies between the distinct sets of samples. SMWs are particularly enriched in Fe, Zn, and Pb. Concerning isotopic composition, SMWs exhibit δ66Zn values ranging from - 0.67 to 1.66‰. Urban samples display δ66Zn values between - 0.11 and 0.13‰, and soils present δ66Zn values between - 0.24 and 0.47‰. The 206Pb/204Pb ratio was estimated to range from 17.550 to 18.807 for soils, from 17.973 to 18.219 for urban samples, and from 18.313 to 18.826 for SMWs. For each of the three sets of samples (soils, urban, industrial), variations of geochemical fingerprint were observed. For soils, the relatively large variations of Zn and Pb isotopic compositions were attributed to distinct land use and the contribution of atmospheric deposition. For industrial samples, the variations were more intense and may be attributed either to distinct industrial processes in the production of pig iron or to distinct furnace-flume treatment modes. The three sets of samples (urban, industrial, and detrital) could be distinguished based on Zn and Pb contents and isotopes. Finally, this study not only highlighted the sources that released particulate Zn and Pb into the Orne River system, it also demonstrated that urban particles are well defined in terms of Zn and Pb isotopic signatures, and those isotopic signatures could be extrapolated to other case studies.


Asunto(s)
Monitoreo del Ambiente , Plomo , Ríos , Zinc , Plomo/análisis , Francia , Zinc/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Suelo/química
2.
Mol Cell Endocrinol ; 589: 112235, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621656

RESUMEN

Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor ß-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.


Asunto(s)
Hormona Luteinizante , Receptores de HL , Transducción de Señal , Receptores de HL/metabolismo , Receptores de HL/genética , Humanos , Transducción de Señal/efectos de los fármacos , Hormona Luteinizante/metabolismo , Animales , AMP Cíclico/metabolismo , Unión Proteica , Progesterona/metabolismo , Receptores de HFE/metabolismo , Receptores de HFE/genética , Testosterona/metabolismo , Testosterona/biosíntesis , Células HEK293 , Proteínas de Unión al GTP/metabolismo , Esteroides/biosíntesis , Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA