Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 72, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937848

RESUMEN

BACKGROUND: Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance. RESULTS: The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies. CONCLUSIONS: These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , Humanos , Aguas Residuales/virología , Aguas Residuales/microbiología , SARS-CoV-2/efectos de los fármacos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Europa (Continente)/epidemiología , Encuestas y Cuestionarios , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Farmacorresistencia Microbiana
2.
Resour Conserv Recycl ; 164: 105205, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33390661

RESUMEN

Understanding the complex relationships amongst Water, Energy, Food and Ecosystems (WEFE nexus) together with the achievement of Sustainable Development Goals (SDGs) is critical for the development of a sustainable and secure future in the Mediterranean area. In this study, we analysed 29 case studies across the Mediterranean region which describe potential success stories for the implementation of good nexus practices. We developed an analytical framework for investigating the impacts on 15 SDG targets and we also explicitly quantified the magnitude of interconnection of nexus pillars with SDGs. Our findings showed that renewable energies have a predominant role on sustainability. Moreover, to achieve the highest positive impacts on economy, environment and society, it is necessary to ensure that both people and ecosystems benefit from a minimum amount of goods/qualities as expected by specific targets like SDG 6.1-4 (clean water and sanitation) and 15.1-3 (life on land), as well as 7.2-3 (affordable and clean energy) that are strongly linked with 13.1 (climate action). We showed also that the strongest interconections between SDG and WEFE are present for the categories of renewable energy system (RED and REW). However, the analysis showed that there is a tendency to focus on a specific sector (e.g. agriculture) and that the good nexus practices implementation is not enough to understand the achievement and progress towards the SDGs. For that reason, we recommended that a more holistic nexus approach including end of supply chain options should be systematically integrated into the project design or evaluation.

3.
Viruses ; 15(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36680246

RESUMEN

Multiple lineages of SARS-CoV-2 have been identified featuring distinct sets of genetic changes that confer to the virus higher transmissibility and ability to evade existing immunity. The continuous evolution of SARS-CoV-2 may pose challenges for current treatment options and diagnostic tools. In this study, we have first evaluated the performance of the 14 WHO-recommended real-time reverse transcription (RT)-PCR assays currently in use for the detection of SARS-CoV-2 and found that only one assay has reduced performance against Omicron. We then developed a new duplex real-time RT-PCR assay based on the amplification of two ultra-conserved elements present within the SARS-CoV-2 genome. The new duplex assay successfully detects all of the tested SARS-CoV-2 variants of concern (including Omicron sub-lineages BA.4 and BA.5) from both clinical and wastewater samples with high sensitivity and specificity. The assay also functions as a one-step droplet digital RT-PCR assay. This new assay, in addition to clinical testing, could be adopted in surveillance programs for the routine monitoring of SARS-CoV-2's presence in a population in wastewater samples. Positive results with our assay in conjunction with negative results from an Omicron-specific assay may provide timely indication of the emergence of a novel SARS-CoV-2 variant in a certain community and thereby aid public health interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , Aguas Residuales , COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Prueba de COVID-19
4.
Water Res ; 230: 119539, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610182

RESUMEN

A state-of-the-art wide-scope target screening of 2,362 chemicals and their transformation products (TPs) was performed in samples collected within the Joint Danube Survey 4 (JDS4) performed in 2019. The analysed contaminants of emerging concern (CECs) included three major categories: plant protection products (PPPs), industrial chemicals and pharmaceuticals and personal care products (PPCPs). In total, 586 CECs were detected in the samples including 158 PPPs, 71 industrial chemicals, 348 PPCPs, and 9 other chemicals. A wide-variety of sample matrices were collected including influent and effluent wastewater, groundwater, river water, sediment and biota. Forty-five CECs (19 PPPs, 8 industrial chemicals, 18 PPCPs) were detected at levels above their ecotoxicological thresholds (lowest predicted no-effect concentration (PNEC) values) in one or more of the investigated environmental compartments, indicating potential adverse effects on the impacted ecosystems. Among them 12 are legacy substances; 33 are emerging and qualify as potential Danube River Basin Specific Pollutants (RBSPs). Moreover, the efficiency of the wastewater treatment plants (WWTPs) was evaluated using 20 selected performance indicator chemicals. WWTPs showed effective removal (removal rate ≥80%) and medium removal (removal rate 25-80%) for 6 and 8 of the indicator chemicals, respectively. However, numerous contaminants passed the WWTPs with a lower removal rate. Further investigation on performance of WWTPs is suggested at catchment level to improve their removal efficiency. WWTP effluents are proven to be one of the major sources of contaminants in the Danube River Basin (DRB). Other sources include sewage discharges, industrial and agricultural activities. Continuous monitoring of the detected CECs is suggested to ensure water quality of the studied area.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Ríos/química , Ecosistema , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas , Cromatografía de Gases , Preparaciones Farmacéuticas
5.
Water Res X ; 21: 100203, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38098886

RESUMEN

Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.

6.
Microbiol Resour Announc ; 11(2): e0122921, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35084221

RESUMEN

Wastewater-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surveillance of Frankfurt Airport by genome sequencing was used to detect SARS-CoV-2 variants entering the region. In November 2021, we found all characteristic mutations of Omicron in wastewater originating from Frankfurt Airport before the first confirmed clinical report from an arriving passenger on 26 November 2021.

7.
Water Res ; 214: 118162, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35193077

RESUMEN

For community-level monitoring, the European Commission under the EU Sewage Sentinel System recommends wastewater-based SARS-CoV-2 surveillance. Tracking SARS-CoV-2 variants in a community is pivotal for appropriate public health response. Genome sequencing of SARS-CoV-2 in wastewater samples for tracking variants is challenging, often resulting in low coverage genome sequences, thereby impeding the detection of the SARS-CoV-2 mutations. Therefore, we aimed at high-coverage SARS-CoV-2 genome sequences from sewage samples which we successfully accomplished. This first pan-European surveillance compared the mutation profiles associated with the variants of concerns: B.1.1.7, P.1, B.1.351 and B.1.617.2 across 20 European countries, including 54 municipalities. The results highlight that SARS-CoV-2 variants detected in the wastewater samples mirror the variants profiles reported in clinical data. This study demonstrated that >98% coverage of SARS-CoV-2 genomic sequences is possible and can be used to track SARS-CoV-2 mutations in wastewater to support identifying variants circulating in a city at the community level.

8.
Sci Total Environ ; 828: 154243, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245548

RESUMEN

On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are exposed to complex transport and transformation processes. However, detailed process knowledge as revealed by Lagrangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phytoplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll concentration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition experiments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up- to downstream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.


Asunto(s)
Sequías , Ríos , Procesos Autotróficos , Materia Orgánica Disuelta , Fitoplancton
9.
J Chromatogr A ; 1216(7): 1126-31, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19131070

RESUMEN

An analytical method was developed for the analysis of sucralose, a persistent chlorinated calorie-free sugar substitute, in surface waters. The method is based on solid-phase extraction (SPE) of 400mL water using Oasis HLB (Waters) adsorber material, followed by negative electrospray ionization (ESI) triple quadrupole LC-MS-MS detection. Quantification was performed by external calibration, as well as by isotope dilution with deuterated sucralose d6 internal standard. Extraction with Oasis HLB, a polymeric adsorbent suited for polar compounds, was much more efficient at neutral pH than at pH 3; a recovery of 62+/-9% (n=6; determined at 1microg/L) could be achieved. Strong ion suppression caused by matrix substances was observed for sucralose in the SPE extracts. The analysis of 120 river surface water samples from 27 European countries showed that sucralose, which is in use in Europe since beginning 2005, can be found in the aquatic environment, at concentrations up to 1microg/L. Sucralose was predominately found in samples from the UK, Belgium, the Netherlands, France, Switzerland, Spain, Italy, Norway, and Sweden, suggesting an increased use of the substance in Western Europe.


Asunto(s)
Cromatografía Liquida/métodos , Agua Dulce/química , Extracción en Fase Sólida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Sacarosa/análogos & derivados , Contaminantes Químicos del Agua/análisis , Adsorción , Unión Europea , Humanos , Concentración de Iones de Hidrógeno , Reproducibilidad de los Resultados , Sacarosa/análisis
10.
Chemosphere ; 71(2): 306-13, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17959224

RESUMEN

C7-C11 perfluorinated carboxylates (PFACs) and perfluorooctansulfonate (PFOS) were analysed in selected stretches of the River Po and its major tributaries. Analyses were performed by solid-phase extraction (SPE) with Oasis HLB cartridges and methanol elution followed by LC-MS-MS detection using 13C-labelled internal standards. High concentration levels ( approximately 1.3 microg l(-1)) of perfluorooctanoate (PFOA) were detected in the Tánaro River close to the city Alessandria. After this tributary, levels between 60 and 337 ng l(-1) were measured in the Po River on several occasions. The PFOA concentration close to the river mouth in Ferrara was between 60 and 174 ng l(-1). Using the river discharge flow data in m3 s(-1) at this point (average approximately 920 m3 s(-1) for the year 2006), a mass load of approximately 0.3 kg PFOA per hour or approximately 2.6 tons per year discharged in the Adriatic Sea has been calculated. PFOS concentration levels in the Po River at Ferrara were approximately 10 ng l(-1).


Asunto(s)
Fluorocarburos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida , Monitoreo del Ambiente , Italia , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Factores de Tiempo
12.
Environ Sci Eur ; 29(1): 13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337403

RESUMEN

BACKGROUND: This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. METHODS: The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. RESULTS: The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. CONCLUSIONS: The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.

13.
Atmos Chem Phys ; 16(18): 11915-11935, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30245704

RESUMEN

Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

14.
Chemosphere ; 122: 168-175, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25522853

RESUMEN

Aerobic composting and anaerobic digestion plays an important role in reduction of organic waste by transforming the waste into humus, which is an excellent soil conditioner. However, applications of chemical-contaminated composts on soils may have unwanted consequences such as accumulation of persistent compounds and their transfer into food chains. The present study investigated burden of composts and digestates collected in 16 European countries (88 samples) by the compounds causing dioxin-like effects as determined by use of an in vitro transactivation assay to quantify total concentrations of aryl hydrocarbon receptor-(AhR) mediated potency. Measured concentrations of 2,3,7,8-Tetrachlorodibeno-p-dioxin (2,3,7,8-TCDD) equivalents (TEQbio) were compared to concentrations of polycyclic aromatic hydrocarbons (PAHs) and selected chlorinated compounds, including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), co-planar polychlorinated biphenyls (PCBs), indicator PCB congeners and organochlorine pesticides (OCPs). Median concentrations of TEQbio (dioxin-like compounds) determined by the in vitro assay in crude extracts of various types of composts ranged from 0.05 to 1.2 with a maximum 8.22µg (TEQbio)kg(-1) dry mass. Potencies were mostly associated with less persistent compounds such as PAHs because treatment with sulfuric acid removed bioactivity from most samples. The pan-European investigation of contamination by organic contaminants showed generally good quality of the composts, the majority of which were in compliance with conservative limits applied in some countries. Results demonstrate performance and added value of rapid, inexpensive, effect-based monitoring, and points out the need to derive corresponding effect-based trigger values for the risk assessment of complex contaminated matrices such as composts.


Asunto(s)
Dioxinas/análisis , Hidrocarburos Clorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Animales , Bioensayo , Línea Celular Tumoral , Dioxinas/farmacología , Europa (Continente) , Hidrocarburos Clorados/farmacología , Hidrocarburos Policíclicos Aromáticos/farmacología , Ratas , Receptores de Hidrocarburo de Aril/metabolismo , Medición de Riesgo , Contaminantes del Suelo/farmacología
15.
Sci Total Environ ; 503-504: 22-31, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951181

RESUMEN

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Recursos Hídricos/estadística & datos numéricos , Ecosistema , Monitoreo del Ambiente , Política Ambiental , Unión Europea , Sustancias Peligrosas/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos
16.
Chemosphere ; 47(4): 455-66, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11999621

RESUMEN

The results of a one-year monitoring program on the two Eastern Chinese River systems, i.e. the Liao-He and the Yangtse, with special emphasis on the presence of triazine herbicides are presented. Sediment, suspended solids and water samples from both rivers were analyzed. Additionally, recovery experiments on the SPE-in-field-enrichment procedure and the extraction methods were performed. The samples were measured by gas chromatography coupled with mass spectrometry, electron capture detection and a newly developed mu-plasma atomic emission detector. A typical result of a one-year monitoring was obtained in case of the Liao-He: During winter, at low water period, low triazine values were found. A similar situation was found in early spring. Highest concentrations of atrazine up to 1600 ng/l were found in late spring in the water samples. Maximum concentrations of atrazine, simazine, propazine, simetryn and prometryn were observed in this season as a result of the actual use of triazines. Finally, after the high water period in autumn the triazine concentrations decreased. Additionally, atrazine adsorbed on sediment (up to 2.8 ng/g) and suspended solids was determined (up to 8 ng/l) during late spring sampling. Therefore, the logarithm of the organic carbon based sorption coefficient of atrazine could be calculated. Low levels of atrazine were measured in the water of Yangtse (up to 18.3 ng/l). The concentrations from all sampling points and sampling stations of a particular sampling date were similar, which indicates a homogeneous distribution of this herbicide. Due to the high discharge rate of up to 79,000 m3/s in case of the Yangtse a considerable mass transport of up to 57.5 kg per day atrazine may take place, even at concentrations below the European drinking water limit of 100 ng/l.


Asunto(s)
Herbicidas/análisis , Triazinas , Contaminantes Químicos del Agua/análisis , Adsorción , China , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos/química , Estaciones del Año , Abastecimiento de Agua
17.
Chemosphere ; 95: 329-35, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24120015

RESUMEN

Chemical composition data for the Danube River and its tributaries sediments were analyzed using positive matrix factorization (PMF). The objective was to identify both natural and anthropogenic sources affecting Danube Basin. During the Joint Danube Survey 2 (JDS2) campaign 148 bottom sediments samples were collected. The following elements were analyzed using the X-ray fluorescence technique: Al, As, Ca, Cd, Cl, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V and Zn. Mercury was determined by cold vapour atomic absorption spectrometry. Three factors were obtained considering the whole dataset (Danube and tributaries), identified as: (i) carbonate component characterized by Ca and Mg; (ii) alumino-silicate component dominated by Si and Al content and the presence of some metals attributed to natural processes; (iii) anthropogenic source identified by Hg, S, P and some heavy metals load. To better characterize the role of tributaries, the Danube and tributaries datasets, were also analyzed separately. The same three factor structures were identified in the Danube dataset. For the tributaries, a four-factor source model gave one further factor dominated by S and P, which could be attributed to the use of fertilizers in agriculture.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Agricultura , Europa Oriental , Metales Pesados/análisis , Análisis Multivariante
18.
Environ Sci Pollut Res Int ; 21(18): 10970-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24870285

RESUMEN

A pan-European monitoring campaign of the wastewater treatment plant (WWTP) effluents was conducted to obtain a concise picture on a broad range of pollutants including estrogenic compounds. Snapshot samples from 75 WWTP effluents were collected and analysed for concentrations of 150 polar organic and 20 inorganic compounds as well as estrogenicity using the MVLN reporter gene assay. The effect-based assessment determined estrogenicity in 27 of 75 samples tested with the concentrations ranging from 0.53 to 17.9 ng/L of 17-beta-estradiol equivalents (EEQ). Approximately one third of municipal WWTP effluents contained EEQ greater than 0.5 ng/L EEQ, which confirmed the importance of cities as the major contamination source. Beside municipal WWTPs, some treated industrial wastewaters also exhibited detectable EEQ, indicating the importance to investigate phytoestrogens released from plant processing factories. No steroid estrogens were detected in any of the samples by instrumental methods above their limits of quantification of 10 ng/L, and none of the other analysed classes of chemicals showed correlation with detected EEQs. The study demonstrates the need of effect-based monitoring to assess certain classes of contaminants such as estrogens, which are known to occur at low concentrations being of serious toxicological concern for aquatic biota.


Asunto(s)
Monitoreo del Ambiente/estadística & datos numéricos , Estrógenos/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Bioensayo , Monitoreo del Ambiente/métodos , Europa (Continente)
19.
Environ Sci Pollut Res Int ; 20(5): 2810-27, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23413125

RESUMEN

Substance-related monitoring is an essential tool within environmental risk assessment processes. The soundness of policy decisions including risk management measures is often directly related to the reliability of the environmental monitoring programs. In addition, monitoring programs are required for identifying new and less-investigated pollutants of concern in different environmental media. Scientifically sound and feasible monitoring concepts strongly depend on the aim of the study. The proper definition of questions to be answered is thus of pivotal importance. Decisions on sample handling, storage and the analysis of the samples are important steps for the elaboration of problem-oriented monitoring strategies. The same applies to the selection of the sampling sites as being representative for scenarios to be investigated. These steps may become critical to handle for larger international monitoring programs and thus trigger the quality of their results. This study based on the work of an IUPAC (International Union of Pure and Applied Chemistry) task group addresses different kinds and approaches of substance-related monitoring of different compartments of soil, groundwater and surface water, and discusses their advantages and limitations. Further important aspects are the monitoring across policies and the monitoring data management using information systems.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación Ambiental/legislación & jurisprudencia , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Monitoreo del Ambiente/legislación & jurisprudencia , Contaminación Ambiental/análisis , Agua Dulce/análisis , Agua Subterránea/análisis , Agua de Mar/análisis , Suelo/análisis
20.
Water Res ; 47(17): 6475-87, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24091184

RESUMEN

In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides MCPA and mecoprop, perfluoroalkyl substances (such as PFOS and PFOA), caffeine, and gadolinium.


Asunto(s)
Recolección de Datos , Monitoreo del Ambiente , Unión Europea , Compuestos Orgánicos/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Diatomeas/efectos de los fármacos , Productos Domésticos/análisis , Compuestos Orgánicos/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Pruebas de Toxicidad Aguda , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA