RESUMEN
Surface-enhanced Raman scattering (SERS) substrates mostly achieve highly sensitive detection by designing various hot spots; however, how to guide molecules to hot spots and prevent them from leaving has not been thoroughly considered and studied. Here, a composite MoS2/Ag NP nanopocket detector composed of MoS2 covered with a Ag NP film was fabricated to develop a general SERS method for actively capturing target molecules into hotspots. A finite element method (FEM) simulation of the multiphysics model was used to analyze the distributions of electric field enhancements and hydrodynamic processes in solution and air of the MoS2/Ag NP nanopocket. The results revealed that covering MoS2 slowed the evaporation of the solution, extended the window period for SERS detection, and enhanced the electric field in comparison with the monolayer Ag NP film. Therefore, in the process of dynamic detection, the MoS2/Ag NP nanopocket can provide an efficient and stable signal within 8 min, increasing the high sensitivity and long-term stability of the SERS method. Furthermore, a MoS2/Ag NP nanopocket detector was applied to detect antitumor drugs and monitor hypoxanthine structural changes in serum, which demonstrated long-term stability and high sensitivity for SERS analysis. This MoS2/Ag NP nanopocket detector paves the way for developing the SERS method in various fields.
RESUMEN
Salicylic acid (SA) is a key hormone that regulates plant growth and immunity, and understanding the physiologic processes induced by SA enables the development of highly pathogen-resistant crops. Here, we report the synthesis of three new SA-sensors (R1-R3) from hydroxyphenol derivatives of a rhodamine-acylhydrazone scaffold and their characterization by NMR and HRMS. Spectroscopic analyses revealed that structural variations in R1-R3 resulted in sensors with different sensitivities for SA. Sensor R2 (with the 3-hydroxyphenyl modification) outperformed R1 (2-hydroxyphenyl) and R3 (4-hydroxyphenyl). The SA-detection limit of R2 is 0.9 µM with an ultra-fast response time (<60 s). In addition, their plant imaging indicated that designed sensor R2 is useful for the further study of SA biology and the discovery and development of new inducers of plant immunity.
Asunto(s)
Células Vegetales , Ácido Salicílico , Rodaminas/química , Ácido Salicílico/análisis , Ácido Salicílico/química , Células Vegetales/química , Colorantes , PlantasRESUMEN
Quantitative measurement is one of the ultimate targets for surface-enhanced Raman spectroscopy (SERS), but it suffers from difficulties in controlling the uniformity of hot spots and placing the target molecules in the hot spot space. Here, a convenient approach of three-phase equilibrium controlling the shrinkage of three-dimensional (3D) hot spot droplets has been demonstrated for the quantitative detection of the anticancer drug 5-fluorouracil (5-FU) in serum using a handheld Raman spectrometer. Droplet shrinkage, triggered by the shaking of aqueous nanoparticle (NP) colloids with immiscible oil chloroform (CHCl3) after the addition of negative ions and acetone, not only brings the nanoparticles in close proximity but can also act as a microreactor to enhance the spatial enrichment capability of the analyte in plasmonic sites and thereby realize simultaneously controlling 3D hot spots and placing target molecules in hot spots. Moreover, the shrinking process of Ag colloid droplets has been investigated using a high-speed camera, an in situ transmission electron microscope (in situ TEM), and a dark-field microscope (DFM), demonstrating the high stability and uniformity of nanoparticles in droplets. The shrunk Ag NP droplets exhibit excellent SERS sensitivity and reproducibility for the quantitative analysis of 5-FU over a large range of 50-1000 ppb. Hence, it is promising for quantitative analysis of complex systems and long-term monitoring of bioreactions.
Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Antineoplásicos/farmacología , Coloides , Fluorouracilo , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Espectrometría Raman/métodosRESUMEN
Highly sensitive surface-enhanced Raman spectroscopy (SERS) sensing not only depends on an active substrate with high density of hot spots, but also depends more on whether the molecules can effectively enter the hot spot region. In this paper, a new SERS detection method based on the nano nest model is developed to autonomously capture molecules into hot spots. The nano nest is composed of silver nanowires modified with gold nanoparticles (Ag NW@Au NPs), which not only form high density hot spots between particles or particles-wires, but also have a coupled electromagnetic field enhancement effect. The SERS detection method based nano nest actively traps molecules through the capillary stage, and makes the molecules move toward densely stacked small gaps (hot spots) by capillary action. The above method has been used to detect different kinds of molecules, such as pesticide residues, adenosine triphosphate in culture medium, and antibiotic residues in aquatic products. In addition, an in situ SERS monitoring of allergic reactions was also performed using nano nests with the feature of actively trapping molecules into the hot spots. This nano nest will be able to perform a direct monitoring of biochemical reactions, and more importantly, it can provide a new scheme for SERS detection.
Asunto(s)
Nanopartículas del Metal , Nanocables , Oro/química , Nanopartículas del Metal/química , Nanocables/química , Plata/química , Espectrometría Raman/métodosRESUMEN
The aggregation of nanoparticles is the key factor to form hot spots for the flocculation-enhanced Raman spectroscopy (FLERS) method. However, the structure of flocculation is still not clear. It is therefore necessary to explore and analyze the aggregation process of nanoparticles more carefully, so as to realize a better application of FLERS. Here, we report the application of in situ liquid cell transmission electron microscopy (TEM) combined with an in situ high-speed camera to analyze the particle behaviors. The results showed that flocculation can exist stably and the gap between the nanoparticles in the flocculation always remained at 7-9 nm, which ensured the high stability and sensitivity of the FLERS method. We successfully applied FLERS to the in situ noninvasive probing of cupping effect substances. The results indicated the scientific principle behind the traditional Chinese medicine method to some extent, which thus provides a new and effective method for the in situ dynamic monitoring of biological systems.
Asunto(s)
Nanopartículas , Espectrometría Raman , Floculación , Microscopía Electrónica de Transmisión , Nanopartículas/químicaRESUMEN
Hybridization chain reaction (HCR) was a significant discovery for the development of nanoscale materials and devices. One key challenge for HCR is the vulnerability to background leakage in the absence of the initiator. Here, we systematically analyze the sources of leakage and refine leak-resistant rule by using molecular thermodynamics and dynamics, biochemical and biophysical methods. Transient melting of DNA hairpin is revealed to be the underlying cause of leakage and that this can be mitigated through careful consideration of the sequence thermodynamics. The transition threshold of the energy barrier is proposed as a testing benchmark of leak-resistance DNA hairpins. The universal design of DNA hairpins is illustrated by the analysis of hsa-miR-21-5p as biomarker when used in conjunction with surface-enhanced Raman spectroscopy. We further extend the strategy for specific signal amplification of miRNA homologs. Significantly, it possibly provides a practical route to improve the accuracy of DNA self-assembly for signal amplification, and that could facilitate the development of sensors for the sensitive detection of interest molecules in biotechnology and clinical medicine.
Asunto(s)
ADN/química , Secuencias Invertidas Repetidas , MicroARNs/química , Hibridación de Ácido Nucleico/métodos , Emparejamiento Base , Benchmarking , ADN/genética , ADN/metabolismo , Exosomas/química , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Espectrometría Raman , Termodinámica , Neoplasias de la Vejiga Urinaria/química , Neoplasias de la Vejiga Urinaria/orinaRESUMEN
Over the past decade, many efforts have been devoted to designing and fabricating substrates for surface-enhanced Raman spectroscopy (SERS) with abundant hot spots to improve the sensitivity of detection. However, there have been many difficulties involved in causing molecules to enter hot spots actively or effectively. Here, we report a general SERS method for actively capturing target molecules in small gaps (hot spots) by constructing a nanocapillary pumping model. The ubiquity of hot spots and the inevitability of molecules entering them lights up all the hot spots and makes them effective. This general method can realize the highly sensitive detection of different types of molecules, including organic pollutants, drugs, poisons, toxins, pesticide residues, dyes, antibiotics, amino acids, antitumor drugs, explosives, and plasticizers. Additionally, in the dynamic detection process, an efficient and stable signal can be maintained for 1-2 min, which increases the practicality and operability of this method. Moreover, a dynamic detection process like this corresponds to the processes of material transformation in some organisms, so the method can be used to monitor transformation processes such as the death of a single cell caused by photothermal stimulation. Our method provides a novel pathway for generating hot spots that actively attract target molecules, and it can achieve general ultratrace detection of diverse substances and be applied to the study of cell behaviors in biological systems.
RESUMEN
It is highly challenging to construct the best SERS hotspots for the detection of proteins by surface-enhanced Raman spectroscopy (SERS). Using its own characteristics to construct hotspots can achieve the effect of sensitivity and specificity. In this study, we built a fishing mode device to detect the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at low concentrations in different detection environments and obtained a sensitive SERS signal response. Based on the spatial resolution of proteins and their protein-specific recognition functions, SERS hotspots were constructed using aptamers and small molecules that can specifically bind to RBD and cooperate with Au nanoparticles (NPs) to detect RBD in the environment using SERS signals of beacon molecules. Therefore, two kinds of AuNPs modified with aptamers and small molecules were used in the fishing mode device, which can specifically recognize and bind RBD to form a stable hotspot to achieve high sensitivity and specificity for RBD detection. The fishing mode device can detect the presence of RBD at concentrations as low as 0.625 ng/mL and can produce a good SERS signal response within 15 min. Meanwhile, we can detect an RBD of 0.625 ng/mL in the mixed solution with various proteins, and the concentration of RBD in the complex environment of urine and blood can be as low as 1.25 ng/mL. This provides a research basis for SERS in practical applications for protein detection work.
Asunto(s)
Sitios de Unión , Nanopartículas del Metal , Glicoproteína de la Espiga del Coronavirus/química , COVID-19 , Oro , Humanos , SARS-CoV-2RESUMEN
Development of analytical methods allowing sensitive detection of neurotransmitters in various biofluids is vital. However, limitations of these methods include interference of impurities and stringent requirements concerning sample purity. In the current work, we developed a strategy for the rapid and sensitive analysis of dopamine (DA) in various biofluids with a smart surface-enhanced Raman spectroscopy (SERS) probe composed of magnetite Fe3O4 and Au nanoparticles (Fe3O4/Au NPs). Besides the simple and quick separation of DA from the specimen, Fe3O4 not only enabled a specific chemical interaction with DA molecules, but also acted as a SERS substrate capable of electromagnetically enhancing the Raman signal of DA. Therefore, the Fe3O4/Au NP composite with its coexisting electric-field effect and charger transfer (CT) enhancement was found to be beneficial for capturing the target molecules in biological environments and then enhancing the DA sensitivity. To understand the strong binding interaction between Fe3O4/Au and DA, X-ray photoelectron spectroscopy (XPS) was carried out, specifically to illuminate the chemical adsorption or possible CT complex. Moreover, a rapid purification strategy for further separating DA from serum was developed, and thus a high nanometer-level sensitivity was achieved. In addition, the feasibility of using Fe3O4/Au combined with the developed purification method was also verified using various tissue homogenates spiked with DA molecules. Such a nanocomposite can offer the possibility of efficiently separating DA from the complex specimen and then providing the sensitive detection of DA for various tissues. Accordingly, the smart SERS Fe3O4/Au nanocomposite probe, with its advantages of simple pre-treatment and synergetic enhanced mechanisms, shows great promise for the rapid and sensitive detection of DA in complicated specimens.
Asunto(s)
Dopamina/sangre , Oro/química , Nanopartículas de Magnetita/química , Nanocompuestos/química , Adsorción , Humanos , Espectrometría Raman/métodos , Resonancia por Plasmón de Superficie/métodosRESUMEN
We demonstrated a surface-enhanced Raman spectroscopy (SERS) nanoprobe, neocuproine-Cu (Nc-CuII)-functionalized Au-Ag "nanobowls" (Au-Ag NBs/Nc-CuII), for detection of glutathione (GSH). Detection was accomplished with alternation of SERS spectra from Nc-CuII into Nc-CuI resulting from the reaction of GSH with Nc-CuII on Au-Ag NBs. This nanoprobe exhibited high selectivity and sensitivity (µM) towards GSH.
Asunto(s)
Glutatión/análisis , Glutatión/química , Oro/química , Límite de Detección , Nanoestructuras/química , Plata/química , Espectrometría Raman/métodosRESUMEN
The development of sensitive and rapid methods for analysis and detection of small molecules is highly desirable for medical diagnostics and therapeutics. We report an acupuncture needle functionalized with gold nanoparticles (Au NPs) and a macrocyclic amine (MA) Raman tag as the platform to realize the sensitive detection of adenosine triphosphate (ATP) by surface-enhanced Raman spectroscopy (SERS). The assembled Au NPs with abundant hot spots on the surface of the needle avoids the aggregation of Au NPs and results in a good signal response. Moreover, there is strong combination between ATP and MA through electrostatic adsorption, hydrogen-bonding interactions, and π-π stacking, and as a consequence, this functionalized needle can be used as a SERS platform for detection of ATP (25 nM) through a decrease of the Raman signal of MA resulting from the high chemical affinity of ATP for MA. Specially, the Au NP/MA-functionalized needle is conveniently used to monitor ATP (100 nM) added to serum, and demonstrates great promise in the study and detection of ATP in a complex sample, laying the foundation for SERS applications in complex acupuncture specimens with fast response and simple operation. Graphical abstract.
Asunto(s)
Acupuntura/instrumentación , Adenosina Trifosfato/sangre , Agujas , Espectrometría Raman/métodos , Oro/química , Indicadores y Reactivos/química , Límite de Detección , Nanopartículas del Metal/químicaRESUMEN
Surface enhanced Raman spectroscopy (SERS) is a powerful spectroscopic technique with unique vibrational fingerprints, making it an ideal candidate for in situ multiphase detection. However, it is a great challenge to determine how to guide the SERS sensor to target molecules of interest in multiphase heterogeneous samples with minimal disturbance. Here, we present a portable ultrasensitive and highly repeatable SERS sensor for in situ multiphase detection. The sensor is composed of commercial Ag acupuncture needle and PVP-Au nanoparticles (Au NPs). The PVP on the Au NPs can adsorb and induce the Au NPs into a highly uniform array on the surface of the Ag needle because of its adhesiveness and steric nature. The Au NPs-Ag Needle system (Au-AgN) holds a huge SERS effect, which is enabled by the multiple plasmonic couplings from particle-film and interparticle. The PVP, as the amphiphilic polymer, promotes the target molecules to adsorb on surface of the Au-AgN whether in the oil phase or in the water phase. In this work, the Au-AgN sensor was directly inserted into the multiphase system with the laser in situ detection, and SERS detection at different spots of the Au-AgN sensor provided Raman signal of targets molecule in the different phase. In situ multiphase detection can minimize the disturbance of sampling and provide more accurate information. The facile fabrication and amphiphilic functionalization make Au-AgN sensor as generalized SERS detection platform for on-site testing of aqueous samples, organic samples, even the multiphase heterogeneous samples.
Asunto(s)
Oro/química , Nanopartículas del Metal/química , Agujas , Povidona/química , Espectrometría Raman/instrumentación , Terapia por Acupuntura/instrumentación , Adsorción , Técnicas Biosensibles/instrumentación , Humanos , Plata/química , Propiedades de Superficie , Tensoactivos/químicaRESUMEN
Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100â ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection.
Asunto(s)
Oro/química , Nanopartículas del Metal/química , Preparaciones Farmacéuticas/análisis , Espectrometría Raman/métodos , Anisotropía , Ciclohexanos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Nanotubos/química , Reproducibilidad de los Resultados , Agua/químicaRESUMEN
Guanylate binding protein 2 (GBP2) is one member of GBP family. Recently, GBP2 has been proposed to be a novel target of anti-cancer drugs. However, the role of GBP2 in the traumatic brain injury (TBI) is very limited. In this study, we sought to define GBP2's role in brain injury. GBP2 protein levels were significantly increased in the brain 3 days after injury, suggesting a functional role for GBP2 in TBI. Neuronal cells overexpressing GBP2 exhibited up-regulation of co-location of GBP2 and NeuN following TBI, suggesting that GBP2 potentiates the neuron apoptosis. To confirm the role of GBP2 in neuron apoptosis process, we employed a highly potent inhibitor of GBP2 (GBP2 RNAi). In H2O2-stimulated PC12 cells, in vitro blockade of GBP2 activity using GBP2 RNAi markedly attenuated the neuron apoptosis number. GBP2 RNAi also inhibited the expression levels of active caspase3 and p-Stat1. Furthermore, we found the expression of p-Stat1 in line with GBP2 and GBP2 interacted with p-Stat1 following TBI. The Jak2 inhibitor, AG490 inhibited this interaction and decreased the active caspase3 expression as well as promoted the functional recovery. Taken together, these data suggest that GBP2 RNAi has a protective effect in a rat TBI. This study demonstrates that GBP2 is an important positive regulator of TBI and is a promising therapeutic target for brain injury.
Asunto(s)
Apoptosis/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Unión al GTP/biosíntesis , Neuronas/metabolismo , Regulación hacia Arriba/fisiología , Animales , Lesiones Traumáticas del Encéfalo/patología , Corteza Cerebral/patología , Masculino , Neuronas/patología , Células PC12 , Ratas , Ratas Sprague-DawleyRESUMEN
Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.
Asunto(s)
Colorantes Fluorescentes , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Rodaminas , Colorantes Fluorescentes/química , Rodaminas/química , Especies de Nitrógeno Reactivo/análisis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Imagen Óptica , Animales , Azufre/química , Azufre/análisisRESUMEN
The impact of biodegradable microplastics on the microbial community and dissolved organic matter (DOM) in latosol has not been well reported. In this study, an incubation experiment at 25 ºC for 120 days using latosol amended with low (5%) and high (10%) concentrations of polybutylene adipate terephthalate (PBAT) microplastics was carried out to explore the impacts of PBAT microplastics on soil microbial communities and DOM chemodiversity, and the intrinsic interactions between their shifts. The main bacterial and fungal phyla in soil, namely Chloroflexi, Actinobacteria, Chytridiomycota, and Rozellomycota showed a nonlinear relationship with PBAT concentration and played a pivotal role in shaping DOM chemodiversity. A higher decreased levels of lignin-like compounds and increased levels of protein-like and condensed aromatic compounds in the 5% treatment were observed than that in the 10% treatment. Furthermore, a higher increase relative abundance of CHO compounds in the 5% treatment than in the 10% treatment was ascribed to its higher oxidation degree. Co-occurrence network analysis suggested that bacteria formed more complex relationships with DOM molecules than fungi did, indicating their critical roles in DOM transformation. Our study has important implications for understanding the potential influence of biodegradable microplastics on carbon biogeochemical roles in soil.
Asunto(s)
Materia Orgánica Disuelta , Microplásticos , Plásticos , Bacterias , Suelo/química , AdipatosRESUMEN
Sensitivity and credibility detecting histamine (HA) as an important neurotransmitter in biofluids is of importance in analytical science and physiology. Surface-enhanced Raman spectroscopy (SERS) is able to realize the high sensitivity with single molecules level, but providing the high sensitivity for HA with a small cross section remains a challenge. Here we develop the metal complex-based SERS nanoprobe nitrilotriacetic acid-Ni2+ (NTA-Ni2+) combined with self-assemble Au NPs active substrates for sensitive detection of HA. The NTA-Ni2+ can capture the HA molecules close to Au NPs substrates and then amplify the Raman signals of HA owing to the formation of a complex of NTA-Ni2+-HA. The self-assemble Au film through the evaporation-driven method can provide the high-density hot spots substrate with high stability and reproducibility. The NTA-Ni2+ decorated Au NPs as nanoprobe responds to HA with 1 µM level of sensitivity. More importantly, the developed SERS nanoprobe composing of NTA-Ni2+ and self-assemble Au NPs can be utilized to detect and monitor the HA spiked into serum, indicating the potential prospect in analysis of HA in complex specimen.
Asunto(s)
Oro , Nanopartículas del Metal , Histamina , Nanotecnología , Reproducibilidad de los Resultados , Espectrometría RamanRESUMEN
Trinitrotoluene (TNT) is a primary component in chemical explosives, making them a common focus in public safety detection. However, it is very difficult to achieve selective and sensitive detection of the TNT molecule in practical application. In the present study, a simple surface enhanced Raman scattering (SERS) sensing based on monoethanolamine (MEA) - modified gold nanoparticles (Au NPs) was expanded for high selectivity and sensitive detecting of TNT in an envelope, luggage, lake water, and clothing through a quickly sampling and detection process. The monoethanolamine molecule based on Meisenheimer complex lights up ultra-high Raman scattering of a nonresonant molecule on the superficial coat of gold nanoparticles. Using this detection sensor, a molecular bridge can be established to selectively detect trinitrotoluene with a detection limit of 21.47 pM. We were able to rapidly identification trinitrotoluene molecule with a powerful selective over the familiar interfering substances nitrophenol, picric acid, 2,4-dinitrophenol, and 2,4-dinitrotoluene. The outcome in this work supply an efficient solution to the test of trinitrotoluene and to establishing a SERS sensor analytical strategy. The studies have demonstrated that the MEA-Au NPs based SERS sensing can be potentially used in field detection the trace amount of chemical explosives for public security.
RESUMEN
Surface-enhanced Raman spectroscopy (SERS) has been widely applied to identify or detect illicit drugs, because of the ability for highly specific molecular fingerprint and independence of aqueous solutions impact. We summarize the progress in determination of illicit drugs using SERS, including trace illicit drugs, suspicious objects and drugs or their metabolites in real biological system (urine, saliva and so on). Even though SERS detection of illicit drugs in real samples still remains a huge challenge because of the complex unknown environment, the efficient sample separation and the improved hand-held Raman analyzer will provide the possibility to make SERS a practically analytical technique. Moreover, we put forward a prospective overview for future perspectives of SERS as a practical sensor for illicit drugs determination. Perhaps the review is not exhaustive, we expect to help researchers to understand the evolution and challenges in this field and further interest in promoting Raman and SERS as a practical analyzer for convenient and automated illicit drugs identification.
Asunto(s)
Drogas Ilícitas/análisis , Espectrometría Raman/métodos , Líquidos Corporales/química , Humanos , Drogas Ilícitas/sangre , Drogas Ilícitas/orina , Espectrometría Raman/instrumentaciónRESUMEN
A novel long-period and high-stability 3D hotspot matrix was constructed with the assistance of glycerol based on our previous study on the dynamic-SERS approach in the water system: it could increase efficient hotspot duration from few seconds to twenty minutes and strongly improve sensitivity and reproducibility for SERS detection.