Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 201(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30833356

RESUMEN

Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR).IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.


Asunto(s)
Represión Catabólica , Enterococcus faecalis/metabolismo , Etanolamina/metabolismo , Regulación Bacteriana de la Expresión Génica , Medios de Cultivo/química , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Eliminación de Gen , Genes Reguladores , Prueba de Complementación Genética
2.
Biomolecules ; 13(2)2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36830726

RESUMEN

An important post-translational modification (PTM) of α-tubulin is the removal of amino acids from its C-terminus. Removal of the C-terminal tyrosine residue yields detyrosinated α-tubulin, and subsequent removal of the penultimate glutamate residue produces ΔC2-α-tubulin. These PTMs alter the ability of the α-tubulin C-terminal tail to interact with effector proteins and are thereby thought to change microtubule dynamics, stability, and organization. The peptidase(s) that produces ΔC2-α-tubulin in a physiological context remains unclear. Here, we take advantage of the observation that ΔC2-α-tubulin accumulates to high levels in cells lacking tubulin tyrosine ligase (TTL) to screen for cytosolic carboxypeptidases (CCPs) that generate ΔC2-α-tubulin. We identify CCP1 as the sole peptidase that produces ΔC2-α-tubulin in TTLΔ HeLa cells. Interestingly, we find that the levels of ΔC2-α-tubulin are only modestly reduced in photoreceptors of ccp1-/- mice, indicating that other peptidases act synergistically with CCP1 to produce ΔC2-α-tubulin in post-mitotic cells. Moreover, the production of ΔC2-α-tubulin appears to be under tight spatial control in the photoreceptor cilium: ΔC2-α-tubulin persists in the connecting cilium of ccp1-/- but is depleted in the distal portion of the photoreceptor. This work establishes the groundwork to pinpoint the function of ΔC2-α-tubulin in proliferating and post-mitotic mammalian cells.


Asunto(s)
Neuronas , Tubulina (Proteína) , Humanos , Ratones , Animales , Tubulina (Proteína)/metabolismo , Células HeLa , Neuronas/metabolismo , Péptido Hidrolasas/metabolismo , Tirosina/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismo
3.
Curr Biol ; 31(4): 900-907.e6, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482110

RESUMEN

Detyrosination of the α-tubulin C-terminal tail is a post-translational modification (PTM) of microtubules that is key for many biological processes.1 Although detyrosination is the oldest known microtubule PTM,2-7 the carboxypeptidase responsible for this modification, VASH1/2-SVBP, was identified only 3 years ago,8,9 precluding genetic approaches to prevent detyrosination. Studies examining the cellular functions of detyrosination have therefore relied on a natural product, parthenolide, which is widely believed to block detyrosination of α-tubulin in cells, presumably by inhibiting the activity of the relevant carboxypeptidase(s).10 Parthenolide is a sesquiterpene lactone that forms covalent linkages predominantly with exposed thiol groups; e.g., on cysteine residues.11-13 Using mass spectrometry, we show that parthenolide forms adducts on both cysteine and histidine residues on tubulin itself, in vitro and in cells. Parthenolide causes tubulin protein aggregation and prevents the formation of microtubules. In contrast to epoY, an epoxide inhibitor of VASH1/2-SVBP,9 parthenolide does not block VASH1-SVBP activity in vitro. Lastly, we show that epoY is an efficacious inhibitor of microtubule detyrosination in cells, providing an alternative chemical means to block detyrosination. Collectively, our work supports the notion that parthenolide is a promiscuous inhibitor of many cellular processes and suggests that its ability to block detyrosination may be an indirect consequence of reducing the polymerization-competent pool of tubulin in cells.


Asunto(s)
Sesquiterpenos , Tubulina (Proteína) , Carboxipeptidasas/metabolismo , Proteínas Portadoras , Proteínas de Ciclo Celular/metabolismo , Cisteína , Microtúbulos/metabolismo , Sesquiterpenos/farmacología , Tubulina (Proteína)/efectos de los fármacos , Tubulina (Proteína)/metabolismo
4.
Methods Enzymol ; 549: 489-512, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25432762

RESUMEN

Discovery of RNA elements, including riboswitches and regulatory RNAs, has revealed additional regulatory mechanisms for transcript stability, transcript termination, and translational initiation. These regulatory RNA molecules act through direct binding to cellular targets including other RNA molecules, proteins, and low molecular weight metabolites. RNA-RNA interactions based on complementarity can be identified through bioinformatic analysis. However, identification of novel interactions between these regulatory RNA molecules and their partners other than complementary sequences is more challenging. We have developed a technique called Differential Radial Capillary Action of Ligand Assay (DRaCALA) to facilitate the detection of direct binding between RNA elements to proteins or low molecular weight ligands. Previously, we have described the adaptation of this technique to detect the binding interaction between Vc2 riboswitch to a signaling cyclic dinucleotide called cyclic-di-GMP. Here, we describe the adaptation of DRaCALA for identifying sequence-specific RNA-binding proteins directly from E. coli cell lysates expressing the recombinant binding protein. DRaCALA can be used to qualitatively and quantitatively assess RNA-protein interaction in whole cell lysate, determine the kinetics of the binding, and test for competitors. Using DRaCALA in a high-throughput format has the potential to rapidly identify sequence-specific RNA-binding proteins.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Riboswitch , Bioquímica/métodos , Escherichia coli/química , Unión Proteica , ARN Bacteriano/química , Proteínas Recombinantes/metabolismo
5.
Science ; 345(6199): 937-40, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25146291

RESUMEN

The ethanolamine utilization (eut) locus of Enterococcus faecalis, containing at least 19 genes distributed over four polycistronic messenger RNAs, appears to be regulated by a single adenosyl cobalamine (AdoCbl)-responsive riboswitch. We report that the AdoCbl-binding riboswitch is part of a small, trans-acting RNA, EutX, which additionally contains a dual-hairpin substrate for the RNA binding-response regulator, EutV. In the absence of AdoCbl, EutX uses this structure to sequester EutV. EutV is known to regulate the eut messenger RNAs by binding dual-hairpin structures that overlap terminators and thus prevent transcription termination. In the presence of AdoCbl, EutV cannot bind to EutX and, instead, causes transcriptional read through of multiple eut genes. This work introduces riboswitch-mediated control of protein sequestration as a posttranscriptional mechanism to coordinately regulate gene expression.


Asunto(s)
Cobamidas/metabolismo , Enterococcus faecalis/genética , Etanolamina/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Mensajero/metabolismo , Elementos de Respuesta , Riboswitch/fisiología , Transcripción Genética , Secuencia de Bases , Enterococcus faecalis/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , Riboswitch/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA