RESUMEN
Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data. Here, we use eddy covariance to quantify the net ecosystem exchange (NEE) and its components-gross primary production (GPP) and ecosystem respiration (Reco) for years 2010-2022 for a Sahelian semiarid savanna to study trends in the fluxes. Significant negative trends were found for NEE (12.7 ± 2.8 g C m2 year-1), GPP (39.6 ± 7.9 g C m2 year-1), and Reco (32.2 ± 8.9 g C m2 year-1). We found that NEE decreased by 60% over the study period, and this decrease was mainly caused by stronger negative trends in rainy season GPP than in Reco. Additionally, we observed strong increasing trends in vapor pressure deficit, but no trends in rainfall or soil water content. Thus, a proposed explanation for the decrease in carbon sink strength is increasing atmospheric dryness. The warming climate in the Sahel, coupled with increasing evaporative demand, may thus lead to decreased GPP levels across this biome, and lowering its CO2 sequestration.
Asunto(s)
Secuestro de Carbono , Cambio Climático , Pradera , Estaciones del Año , Ciclo del Carbono , Suelo/química , LluviaRESUMEN
Traditional grazing management practices are central to rangeland productivity and biodiversity. However, the degradation of rangelands and loss of ecosystem services have raised concerns about the future of pastoralism as a form of land use. It is imperative to understand how these practices influence vegetation attributes, e.g., herbaceous species diversity and composition, growth forms (grass, forbs), life form (annuals, perennials), tree metrics (density, canopy cover, and biomass). This study evaluates vegetation shifts under three grazing management practices-enclosures, open grazing, and browsing lands-in the Somali pastoral ecosystem of Ethiopia. Enclosures exhibited the highest diversity in herbaceous species, with open grazing lands favoring forbs and annuals. Distinct compositional shifts in herbaceous species were observed across regimes, especially in grass and annuals. Enclosures had three times higher herbage biomass of open grazing and double that of browsing management practice. Conversely, browsing management practices presented optimal wood biomass, density, and canopy cover. The results highlight that a transition to combined enclosure and browsing practices can elevate plant production and diversity, benefiting the Somali rangeland economy. Consequently, dryland restoration should incorporate indigenous knowledge to ensure future rangeland sustainability and biodiversity preservation.