RESUMEN
Structure-based drug design (SBDD) is commonly leveraged in rational drug design. Usually, ligand and binding site atomic coordinates from crystallographic data are exploited to optimize potency and selectivity. In addition to traditional, static views of proteins and ligands, we propose using normalized B-factors to study protein dynamics as a part of the drug optimization process. A retrospective case study of crizotinib and lorlatinib bound to both c-ros oncogene 1 kinase (ROS1) and anaplastic lymphoma kinase (ALK) L1196M related normalized B-factors to differences in binding affinity. This analysis showed that ligand binding can have protein-stabilizing effects that start near the ligand but propagate through nearby residues and structural waters to more distal motifs. The potential opportunities for analyzing normalized B-factors in SBDD are also discussed.
RESUMEN
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that can become oncogenic by activating mutations or overexpression. Full kinetic characterization of both phosphorylated and nonphosphorylated wildtype and mutant ALK kinase domain was done. Our structure-based drug design programs directed at ALK allowed us to interrogate whether X-ray crystallography data could be used to support the hypothesis that activation of ALK by mutation occurs due to increased protein dynamics. Crystallographic B-factors were converted to normalized B-factors, which allowed analysis of wildtype ALK, ALK-C1156Y, and ALK-L1196M. This data suggests that mobility of the P-loop, αC-helix, and activation loop (A-loop) may be important in catalytic activity increases, with or without phosphorylation. Both molecular dynamics simulations and hydrogen-deuterium exchange experimental data corroborated the normalized B-factors data.