Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proteomics ; 23(10): e2100414, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36641648

RESUMEN

Epithelial injury is one of the major drivers of acute pulmonary diseases. Recurring injury followed by aberrant repair is considered as the primary cause of chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF). Preclinical in vivo models allow studying early disease-driving mechanisms like the recently established adeno-associated virus-diphtheria toxin receptor (AAV-DTR) mouse model of acute epithelial lung injury, which utilises AAV mediated expression of the human DTR. We performed quantitative proteomics of homogenised lung samples from this model and compared the results to spatially resolved proteomics data of epithelial cell regions from the same animals. In whole lung tissue proteins involved in cGAS-STING and interferon pathways, proliferation, DNA replication and the composition of the provisional extracellular matrix were upregulated upon injury. Besides epithelial cell markers SP-A, SP-C and Scgb1a1, proteins involved in cilium assembly, lipid metabolism and redox pathways were among downregulated proteins. Comparison of the bulk to spatially resolved proteomics data revealed a large overlap of protein changes and striking differences. Together our study underpins the broad usability of bulk proteomics and pinpoints to the benefit of sophisticated proteomic analyses of specific tissue regions or single cell types.


Asunto(s)
Lesión Pulmonar Aguda , Fibrosis Pulmonar Idiopática , Ratones , Animales , Humanos , Proteoma/metabolismo , Proteómica/métodos , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L206-L218, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35762632

RESUMEN

Animal models are important to mimic certain pathways or biological aspects of human pathologies including acute and chronic pulmonary diseases. We developed a novel and flexible mouse model of acute epithelial lung injury based on adeno-associated virus (AAV) variant 6.2-mediated expression of the human diphtheria toxin receptor (DTR). Following intratracheal administration of diphtheria toxin (DT), a cell-specific death of bronchial and alveolar epithelial cells can be observed. In contrast to other lung injury models, the here described mouse model provides the possibility of targeted injury using specific tropisms of AAV vectors or cell-type-specific promotors to drive the human DTR expression. Also, generation of cell-specific mouse lines is not required. Detailed characterization of the AAV-DTR/DT mouse model including titration of viral genome (vg) load and administered DT amount revealed increasing cell numbers in bronchoalveolar lavage (BAL; macrophages, neutrophils, and unspecified cells) and elevation of degenerated cells and infiltrated leukocytes in lung tissue, dependent of vg load and DT dose. Cytokine levels in BAL fluid showed different patterns with higher vg load, e.g., IFNγ, TNFα, and IP10 increasing and IL-5 and IL-6 decreasing, whereas lung function was not affected. In addition, laser-capture microdissection (LCM)-based proteomics of bronchial epithelium and alveolar tissue revealed upregulated immune and inflammatory responses in all regions and extracellular matrix deposition in infiltrated alveoli. Overall, our novel AAV-DTR/DT model allows investigation of repair mechanisms following epithelial injury and resembles specific mechanistic aspects of acute and chronic pulmonary diseases.


Asunto(s)
Lesión Pulmonar Aguda , Toxina Diftérica , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Animales , Toxina Diftérica/metabolismo , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL
3.
FASEB J ; 32(10): 5447-5458, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29718708

RESUMEN

Health has been defined as the capability of the organism to adapt to challenges. In this study, we tested to what extent comprehensively phenotyped individuals reveal differences in metabolic responses to a standardized mixed meal tolerance test (MMTT) and how these responses change when individuals experience moderate weight loss. Metabolome analysis was used in 70 healthy individuals. with profiling of ∼300 plasma metabolites during an MMTT over 8 h. Multivariate analysis of plasma markers of fatty acid catabolism identified 2 distinct metabotype clusters (A and B). Individuals from metabotype B showed slower glucose clearance, had increased intra-abdominal adipose tissue mass and higher hepatic lipid levels when compared with individuals from metabotype A. An NMR-based urine analysis revealed that these individuals also to have a less healthy dietary pattern. After a weight loss of ∼5.6 kg over 12 wk, only the subjects from metabotype B showed positive changes in the glycemic response during the MMTT and in markers of metabolic diseases. Our study in healthy individuals demonstrates that more comprehensive phenotyping can reveal discrete metabotypes with different outcomes in a dietary intervention and that markers of lipid catabolism in plasma could allow early detection of the metabolic syndrome.-Fiamoncini, J., Rundle, M., Gibbons, H., Thomas, E. L., Geillinger-Kästle, K., Bunzel, D., Trezzi, J.-P., Kiselova-Kaneva, Y., Wopereis, S., Wahrheit, J., Kulling, S. E., Hiller, K., Sonntag, D., Ivanova, D., van Ommen, B., Frost, G., Brennan, L., Bell, J. Daniel, H. Plasma metabolome analysis identifies distinct human metabotypes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements.


Asunto(s)
Metaboloma , Periodo Posprandial , Pérdida de Peso , Femenino , Humanos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/diagnóstico , Persona de Mediana Edad
4.
Immunology ; 152(3): 402-413, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28617945

RESUMEN

T-helper cell type 17 (Th17) mediated inflammation is associated with various diseases including autoimmune encephalitis, inflammatory bowel disease and lung diseases such as chronic obstructive pulmonary disease and asthma. Differentiation into distinct T helper subtypes needs to be tightly regulated to ensure an immunological balance. As microRNAs (miRNAs) are critical regulators of signalling pathways, we aimed to identify specific miRNAs implicated in controlling Th17 differentiation. We were able to create a regulatory network model of murine T helper cell differentiation by combining Affymetrix mRNA and miRNA arrays and in silico analysis. In this model, the miR-212~132 and miR-182~183 clusters were significantly up-regulated upon Th17 differentiation, whereas the entire miR-106~363 cluster was down-regulated and predicted to target well-known Th17 cell differentiation pathways. In vitro transfection of miR-18b, miR-106a and miR-363-3p into primary murine Cd4+ lymphocytes decreased expression of retinoid-related orphan receptor c (Rorc), Rora, Il17a and Il17f, and abolished secretion of Th17-mediated interleukin-17a (Il17a). Moreover, we demonstrated target site-specific regulation of the Th17 transcription factors Rora and nuclear factor of activated T cells (Nfat) 5 by miR-18b, miR-106a and miR-363-3p through luciferase reporter assays. Here, we provide evidence that miRNAs are involved in controlling the differentiation and function of T helper cells, offering useful tools to study and modify Th17-mediated inflammation.


Asunto(s)
Diferenciación Celular , MicroARNs/metabolismo , Células Th17/metabolismo , Animales , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones Endogámicos BALB C , MicroARNs/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transducción de Señal , Células Th17/inmunología , Células Th2/inmunología , Células Th2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
5.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G580-G591, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28336547

RESUMEN

Despite the fact that many membrane proteins carry extracellular glycans, little is known about whether the glycan chains also affect protein function. We recently demonstrated that the proton-coupled oligopeptide transporter 1 (PEPT1) in the intestine is glycosylated at six asparagine residues (N50, N406, N439, N510, N515, and N532). Mutagenesis-induced disruption of the individual N-glycosylation site N50, which is highly conserved among mammals, was detected to significantly enhance the PEPT1-mediated inward transport of peptides. Here, we show that for the murine protein the inhibition of glycosylation at sequon N50 by substituting N50 with glutamine, lysine, or cysteine or by replacing S52 with alanine equally altered PEPT1 transport kinetics in oocytes. Furthermore, we provide evidence that the uptake of [14C]glycyl-sarcosine in immortalized murine small intestinal (MODE-K) or colonic epithelial (PTK-6) cells stably expressing the PEPT1 transporter N50Q is also significantly increased relative to the wild-type protein. By using electrophysiological recordings and tracer flux studies, we further demonstrate that the rise in transport velocity observed for PEPT1 N50Q is bidirectional. In line with these findings, we show that attachment of biotin derivatives, comparable in weight with two to four monosaccharides, to the PEPT1 N50C transporter slows down the transport velocity. In addition, our experiments provide strong evidence that glycosylation of PEPT1 confers resistance against proteolytic cleavage by proteinase K, whereas a remarkable intrinsic stability against trypsin, even in the absence of N-linked glycans, was detected.NEW & NOTEWORTHY This study highlights the role of N50-linked glycans in modulating the bidirectional transport activity of the murine peptide transporter PEPT1. Electrophysiological and tracer flux measurements in Xenopus oocytes have shown that removal of the N50 glycans increases the maximal peptide transport rate in the inward and outward directions. This effect could be largely reversed by replacement of N50 glycans with structurally dissimilar biotin derivatives. In addition, N-glycans were detected to stabilize PEPT1 against proteolytic cleavage.


Asunto(s)
Dipéptidos/metabolismo , Endopeptidasa K/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Simportadores/metabolismo , Animales , Transporte Biológico , Biotinilación , Línea Celular , Glicosilación , Cinética , Potenciales de la Membrana , Ratones , Mutación , Transportador de Péptidos 1 , Estabilidad Proteica , Simportadores/genética , Transfección , Tripsina/metabolismo , Xenopus laevis
6.
Front Immunol ; 15: 1346491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911863

RESUMEN

Introduction: Exacerbations of chronic obstructive pulmonary disease (COPD) increase mortality risk and can lead to accelerated loss of lung function. The increased inflammatory response during exacerbations contributes to worsening of airflow limitation, but whether it also impacts epithelial repair is unclear. Therefore, we studied the effect of the soluble factor micro-environment during COPD exacerbations on epithelial repair using an exacerbation cocktail (EC), composed of four factors that are increased in COPD lungs during exacerbations (IL-1ß, IL-6, IL-8, TNF-α). Methods: Mouse organoids (primary CD31-CD45-Epcam+ cells co-cultured with CCL206 fibroblasts) were used to study epithelial progenitor behavior. Mature epithelial cell responses were evaluated using mouse precision cut lung slices (PCLS). The expression of epithelial supportive factors was assessed in CCL206 fibroblasts and primary human lung fibroblasts. Results: EC exposure increased the number and size of organoids formed, and upregulated Lamp3, Muc5ac and Muc5b expression in day 14 organoids. In PCLS, EC imparted no effect on epithelial marker expression. Pre-treatment of CCL206 fibroblasts with EC was sufficient to increase organoid formation. Additionally, the expression of Il33, Tgfa and Areg was increased in CCL206 fibroblasts from EC treated organoids, but these factors individually did not affect organoid formation or size. However, TGF-α downregulated Foxj1 expression and upregulated Aqp5 expression in day 14 organoids. Conclusions: EC exposure stimulates organoid formation and growth, but it alters epithelial differentiation. EC changes the epithelial progenitor support function of fibroblasts which contributes to observed effects on epithelial progenitors.


Asunto(s)
Células Epiteliales , Fibroblastos , Organoides , Enfermedad Pulmonar Obstructiva Crónica , Animales , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Humanos , Ratones , Fibroblastos/metabolismo , Células Epiteliales/metabolismo , Citocinas/metabolismo , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Células Cultivadas , Progresión de la Enfermedad , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Ratones Endogámicos C57BL
7.
ERJ Open Res ; 9(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37228276

RESUMEN

Background: Interleukin-11 (IL-11) is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF), since IL-11 induces myofibroblast differentiation and stimulates their excessive collagen deposition in the lung. In IPF there is disrupted alveolar structural architecture, yet the effect of IL-11 on the dysregulated alveolar repair remains to be elucidated. Methods: We hypothesised that epithelial-fibroblast communication associated with lung repair is disrupted by IL-11. Thus, we studied whether IL-11 affects the repair responses of alveolar lung epithelium using mouse lung organoids and precision-cut lung slices (PCLS). Additionally, we assessed the anatomical distribution of IL-11 and IL-11 receptor (IL-11R) in human control and IPF lungs using immunohistochemistry. Results: IL-11 protein was observed in airway epithelium, macrophages and in IPF lungs, also in areas of alveolar type 2 (AT2) cell hyperplasia. IL-11R staining was predominantly present in smooth muscle and macrophages. In mouse organoid co-cultures of epithelial cells with lung fibroblasts, IL-11 decreased organoid number and reduced the fraction of Prosurfactant Protein C-expressing organoids, indicating dysfunctional regeneration initiated by epithelial progenitors. In mouse PCLS exposed to IL-11, ciliated cell markers were increased. The response of primary human fibroblasts to IL-11 on gene expression level was minimal, though bulk RNA-sequencing revealed IL-11 modulated various processes which are associated with IPF, including unfolded protein response, glycolysis and Notch signalling. Conclusions: IL-11 disrupts alveolar epithelial regeneration by inhibiting progenitor activation and suppressing the formation of mature alveolar epithelial cells. Evidence for a contribution of dysregulated fibroblast-epithelial communication to this process is limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA