Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 16(4): 333-340, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858598

RESUMEN

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.


Asunto(s)
Isótopos de Carbono/química , Resonancia Magnética Nuclear Biomolecular/instrumentación , Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , ADN/química , Escherichia coli/metabolismo , Flúor/química , Fluorouracilo/química , Campos Magnéticos , Peso Molecular , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/química , Thermoplasma/metabolismo
2.
Nature ; 530(7591): 485-9, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886795

RESUMEN

Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.


Asunto(s)
Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Complejo Mediador/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Candida glabrata/genética , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hidrazinas/farmacocinética , Hidrazinas/farmacología , Cetoconazol/farmacología , Complejo Mediador/química , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacocinética , Tiourea/farmacología , Transactivadores/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Angew Chem Int Ed Engl ; 60(25): 13783-13787, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33768661

RESUMEN

Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.


Asunto(s)
Eucariontes/química , Resonancia Magnética Nuclear Biomolecular , Receptores Acoplados a Proteínas G/química , Humanos , Estructura Molecular
4.
Angew Chem Int Ed Engl ; 55(36): 10746-50, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27351143

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy has the intrinsic capabilities to investigate proteins in native environments. In general, however, NMR relies on non-natural protein purity and concentration to increase the desired signal over the background. We here report on the efficient and specific hyperpolarization of low amounts of a target protein in a large isotope-labeled background by combining dynamic nuclear polarization (DNP) and the selectivity of protein interactions. Using a biradical-labeled ligand, we were able to direct the hyperpolarization to the protein of interest, maintaining comparable signal enhancement with about 400-fold less radicals than conventionally used. We could selectively filter out our target protein directly from crude cell lysate obtained from only 8 mL of fully isotope-enriched cell culture. Our approach offers effective means to study proteins with atomic resolution in increasingly native concentrations and environments.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono/química , Óxidos N-Cíclicos/química , Marcaje Isotópico , Polietilenglicoles/química , Propanoles/química , Estructura Secundaria de Proteína , Proteínas/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
5.
J Am Chem Soc ; 137(47): 14877-86, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26218479

RESUMEN

We report a magic angle spinning (MAS) NMR structure of the drug-resistant S31N mutation of M218-60 from Influenza A. The protein was dispersed in diphytanoyl-sn-glycero-3-phosphocholine lipid bilayers, and the spectra and an extensive set of constraints indicate that M218-60 consists of a dimer of dimers. In particular, ∼280 structural constraints were obtained using dipole recoupling experiments that yielded well-resolved (13)C-(15)N, (13)C-(13)C, and (1)H-(15)N 2D, 3D, and 4D MAS spectra, all of which show cross-peak doubling. Interhelical distances were measured using mixed (15)N/(13)C labeling and with deuterated protein, MAS at ωr/2π = 60 kHz, ω0H/2π = 1000 MHz, and (1)H detection of methyl-methyl contacts. The experiments reveal a compact structure consisting of a tetramer composed of four transmembrane helices, in which two opposing helices are displaced and rotated in the direction of the membrane normal relative to a four-fold symmetric arrangement, yielding a two-fold symmetric structure. Side chain conformations of the important gating and pH-sensing residues W41 and H37 are found to differ markedly from four-fold symmetry. The rmsd of the structure is 0.7 Å for backbone heavy atoms and 1.1 Å for all heavy atoms. This two-fold symmetric structure is different from all of the previous structures of M2, many of which were determined in detergent and/or with shorter constructs that are not fully active. The structure has implications for the mechanism of H(+) transport since the distance between His and Trp residues on different helices is found to be short. The structure also exhibits two-fold symmetry in the vicinity of the binding site of adamantyl inhibitors, and steric constraints may explain the mechanism of the drug-resistant S31N mutation.


Asunto(s)
Proteínas de la Matriz Viral/química , Dimerización , Membrana Dobles de Lípidos , Conformación Proteica
6.
J Am Chem Soc ; 136(32): 11308-10, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24937763

RESUMEN

Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl labeling is now well established for bacterial expression using suitable precursors, corresponding methods are still lacking for cell-free expression, which is often the only choice for producing labeled eukaryotic membrane proteins in mg quantities. Here we show that we can express methyl-labeled human integral membrane proteins cost-effectively by cell-free expression based of crude hydrolyzed ILV-labeled OmpX inclusion bodies. These are obtained in Escherichia coli with very high quantity and represent an optimal intermediate to channel ILV precursors into the eukaryotic proteins.


Asunto(s)
Sistema Libre de Células , Proteínas de la Membrana/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Isótopos de Carbono/química , Análisis Costo-Beneficio , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrógeno/química , Hidrolasas/metabolismo , Hidrólisis , Cuerpos de Inclusión/metabolismo , Isoleucina/química , Leucina/química , Espectroscopía de Resonancia Magnética , Micelas , Valina/química
7.
J Membr Biol ; 247(9-10): 957-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24858950

RESUMEN

While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.


Asunto(s)
Algoritmos , Cromatografía en Gel/métodos , Espectroscopía de Resonancia Magnética/métodos , Polímeros/química , Propilaminas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Conformación Proteica
8.
Nucleic Acids Res ; 40(20): 10116-23, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22904068

RESUMEN

The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.


Asunto(s)
ADN/química , Factor de Transcripción YY1/metabolismo , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Células HeLa , Humanos , Simulación de Dinámica Molecular , Plasminógeno/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Unión Proteica
9.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511503

RESUMEN

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Asunto(s)
Aminoácidos , Escherichia coli , Animales , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Aminoácidos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Mamíferos
10.
Nat Chem Biol ; 7(11): 810-7, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21946276

RESUMEN

Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Asunto(s)
Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacocinética , Animales , Disponibilidad Biológica , Química Farmacéutica , Técnicas Químicas Combinatorias , Simulación por Computador , Descubrimiento de Drogas/métodos , Masculino , Metilación , Estructura Molecular , Péptidos Cíclicos/química , Ratas , Relación Estructura-Actividad
11.
Nucleic Acids Res ; 38(6): 1790-5, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20019064

RESUMEN

We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding-DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely 'transcription factor-centric' view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Simulación por Computador , ADN/química , Células HeLa , Humanos , Mutación
12.
Nat Commun ; 13(1): 1513, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314691

RESUMEN

Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic-inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and ¹³C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.

13.
Nucleic Acids Res ; 37(7): 2405-10, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19264801

RESUMEN

No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard-Bishop-Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats.


Asunto(s)
ADN/química , Modelos Químicos , Termodinámica , Secuencia de Bases , Simulación por Computador , Método de Montecarlo , Desnaturalización de Ácido Nucleico
14.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34959731

RESUMEN

Here, we describe the synthesis, characterization, and biological activities of a series of 26 new styryl-2(3H)-benzothiazolone analogs of combretastatin-A4 (CA-4). The cytotoxic activities of these compounds were tested in several cell lines (EA.hy926, A549, BEAS-2B, MDA-MB-231, HT-29, MCF-7, and MCF-10A), and the relations between structure and cytotoxicity are discussed. From the series, compound (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzothiazolone (26Z) exhibits the most potent cytotoxic activity (IC50 0.13 ± 0.01 µM) against EA.hy926 cells. 26Z not only inhibits vasculogenesis but also disrupts pre-existing vasculature. 26Z is a microtubule-modulating agent and inhibits a spectrum of angiogenic events in EA.hy926 cells by interfering with endothelial cell invasion, migration, and proliferation. 26Z also shows anti-proliferative activity in CA-4 resistant cells with the following IC50 values: HT-29 (0.008 ± 0.001 µM), MDA-MB-231 (1.35 ± 0.42 µM), and MCF-7 (2.42 ± 0.48 µM). Cell-cycle phase-specific experiments show that 26Z treatment results in G2/M arrest and mitotic spindle multipolarity, suggesting that drug-induced centrosome amplification could promote cell death. Some 26Z-treated adherent cells undergo aberrant cytokinesis, resulting in aneuploidy that perhaps contributes to drug-induced cell death. These data indicate that spindle multipolarity induction by 26Z has an exciting chemotherapeutic potential that merits further investigation.

15.
Sci Rep ; 11(1): 19752, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611227

RESUMEN

Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.


Asunto(s)
COVID-19/patología , Susceptibilidad a Enfermedades , Síndrome Metabólico/patología , Animales , Factores de Coagulación Sanguínea/genética , Factores de Coagulación Sanguínea/metabolismo , COVID-19/complicaciones , COVID-19/virología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dieta Alta en Grasa/veterinaria , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/genética , Agregación Plaquetaria , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Sistema Renina-Angiotensina , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Porcinos , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
16.
Eur J Med Chem ; 219: 113435, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892272

RESUMEN

The eukaryotic translation initiation factor 4E (eIF4E) is the master regulator of cap-dependent protein synthesis. Overexpression of eIF4E is implicated in diseases such as cancer, where dysregulation of oncogenic protein translation is frequently observed. eIF4E has been an attractive target for cancer treatment. Here we report a high-resolution X-ray crystal structure of eIF4E in complex with a novel inhibitor (i4EG-BiP) that targets an internal binding site, in contrast to the previously described inhibitor, 4EGI-1, which binds to the surface. We demonstrate that i4EG-BiP is able to displace the scaffold protein eIF4G and inhibit the proliferation of cancer cells. We provide insights into how i4EG-BiP is able to inhibit cap-dependent translation by increasing the eIF4E-4E-BP1 interaction while diminishing the interaction of eIF4E with eIF4G. Leveraging structural details, we designed proteolysis targeted chimeras (PROTACs) derived from 4EGI-1 and i4EG-BiP and characterized these on biochemical and cellular levels. We were able to design PROTACs capable of binding eIF4E and successfully engaging Cereblon, which targets proteins for proteolysis. However, these initial PROTACs did not successfully stimulate degradation of eIF4E, possibly due to competitive effects from 4E-BP1 binding. Our results highlight challenges of targeted proteasomal degradation of eIF4E that must be addressed by future efforts.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Sitios de Unión , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/genética , Humanos , Cinética , Simulación del Acoplamiento Molecular , Profármacos/síntesis química , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteómica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
17.
BMC Bioinformatics ; 11: 604, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21172036

RESUMEN

BACKGROUND: DNA instability profiles have been used recently for predicting the transcriptional start site and the location of core promoters, and to gain insight into promoter action. It was also shown that the use of these profiles can significantly improve the performance of motif finding programs. RESULTS: In this work we introduce a new method for computing DNA instability profiles. The model that we use is a modified Ising-type model and it is implemented via statistical mechanics. Our linear time algorithm computes the profile of a 10,000 base-pair long sequence in less than one second. The method we use also allows the computation of the probability that several consecutive bases are unpaired simultaneously. This is a feature that is not available in other linear-time algorithms. We use the model to compare the thermodynamic trends of promoter sequences of several genomes. In addition, we report results that associate the location of local extrema in the instability profiles with the presence of core promoter elements at these locations and with the location of the transcription start sites (TSS). We also analyzed the instability scores of binding sites of several human core promoter elements. We show that the instability scores of functional binding sites of a given core promoter element are significantly different than the scores of sites with the same motif occurring outside the functional range (relative to the TSS). CONCLUSIONS: The time efficiency of the algorithm and its genome-wide applications makes this work of broad interest to scientists interested in transcriptional regulation, motif discovery, and comparative genomics.


Asunto(s)
Biología Computacional/métodos , ADN/química , Regiones Promotoras Genéticas , Algoritmos , Sitios de Unión/genética , Humanos , Modelos Estadísticos , Desnaturalización de Ácido Nucleico , Sitio de Iniciación de la Transcripción
18.
PLoS Comput Biol ; 5(3): e1000313, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19282962

RESUMEN

Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ADN/química , ADN/ultraestructura , Modelos Químicos , Modelos Moleculares , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Simulación por Computador , ARN Polimerasas Dirigidas por ADN/ultraestructura , Calor , Modelos Genéticos , Datos de Secuencia Molecular
19.
Biophys J ; 95(2): 597-608, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18390611

RESUMEN

We showed previously that anharmonic DNA dynamical features correlate with transcriptional activity in selected viral promoters, and hypothesized that areas of DNA softness may represent loci of functional significance. The nine known promoters from human adenovirus type 5 were analyzed for inherent DNA softness using the Peyrard-Bishop-Dauxois model and a statistical mechanics approach, using a transfer integral operator. We found a loosely defined pattern of softness peaks distributed both upstream and downstream of the transcriptional start sites, and that early transcriptional regions tended to be softer than late promoter regions. When reported transcription factor binding sites were superimposed on our calculated softness profiles, we observed a close correspondence in many cases, which suggests that DNA duplex breathing dynamics may play a role in protein recognition of specific nucleotide sequences and protein-DNA binding. These results suggest that genetic information is stored not only in explicit codon sequences, but also may be encoded into local dynamic and structural features, and that it may be possible to access this obscured information using DNA dynamics calculations.


Asunto(s)
Adenoviridae/genética , ADN Viral/química , ADN Viral/genética , Modelos Químicos , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Sitios de Unión , Simulación por Computador , Termodinámica , Activación Transcripcional/genética
20.
J Mol Biol ; 364(3): 352-63, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17011579

RESUMEN

The dsRNA-dependent protein kinase (PKR) is a key mediator of the anti-viral and anti-proliferative effects of interferon. Unphosphorylated PKR is characterized by inhibitory interactions between the kinase and RNA binding domains (RBDs), but the structural details of the latent state and its unraveling during activation are not well understood. To study PKR regulation by NMR we assigned a large portion of the backbone resonances of the catalytically inactive K296R kinase domain, and performed (15)N-heteronuclear single quantum coherence (HSQC) titrations of this kinase domain with the RBDs. Chemical shift perturbations in the kinase indicate that RBD2 binds to the substrate eIF2alpha docking site in the kinase C-lobe. Consistent with these results, a mutation in the eIF2alpha docking site, F495A, displays weaker interactions with the RBD. The full-length RBD1+2 binds more strongly to the kinase domain than RBD2 alone. The observed chemical shift changes extend from the eIF2alpha binding site into the kinase N-lobe and inside the active site, consistent with weak interactions between the N-terminal part of the RBD and the kinase.


Asunto(s)
Modelos Moleculares , eIF-2 Quinasa/química , Secuencia de Aminoácidos , Sitios de Unión , Factor 2 Eucariótico de Iniciación , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína , ARN/química , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA