Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Cancer ; 153(6): 1257-1272, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37323038

RESUMEN

Adiponectin is the major adipocytes-secreted protein involved in obesity-related breast cancer growth and progression. We proved that adiponectin promotes proliferation in ERα-positive breast cancer cells, through ERα transactivation and the recruitment of LKB1 as ERα-coactivator. Here, we showed that adiponectin-mediated ERα transactivation enhances E-cadherin expression. Thus, we investigated the molecular mechanism through which ERα/LKB1 complex may modulate the expression of E-cadherin, influencing tumor growth, progression and distant metastasis. We demonstrated that adiponectin increases E-cadherin expression in ERα-positive 2D and higher extent in 3D cultures. This occurs through a direct activation of E-cadherin gene promoter by ERα/LKB1-complex. The impact of E-cadherin on ERα-positive breast cancer cell proliferation comes from the evidence that in the presence of E-cadherin siRNA the proliferative effects of adiponectin is no longer noticeable. Since E-cadherin connects cell polarity and growth, we investigated if the adiponectin-enhanced E-cadherin expression could influence the localization of proteins cooperating in cell polarity, such as LKB1 and Cdc42. Surprisingly, immunofluorescence showed that, in adiponectin-treated MCF-7 cells, LKB1 and Cdc42 mostly colocalize in the nucleus, impairing their cytosolic cooperation in maintaining cell polarity. The orthotopic implantation of MCF-7 cells revealed an enhanced E-cadherin-mediated breast cancer growth induced by adiponectin. Moreover, tail vein injection of MCF-7 cells showed a higher metastatic burden in the lungs of mice receiving adiponectin-treated cells compared to control. From these findings it emerges that adiponectin treatment enhances E-cadherin expression, alters cell polarity and stimulates ERα-positive breast cancer cell growth in vitro and in vivo, sustaining higher distant metastatic burden.


Asunto(s)
Adiponectina , Neoplasias , Humanos , Animales , Ratones , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Línea Celular Tumoral , Células MCF-7 , Cadherinas/genética
2.
J Transl Med ; 21(1): 232, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004031

RESUMEN

BACKGROUND: The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS: Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS: Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION: These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , MicroARN Circulante/metabolismo , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Calidad de Vida , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958677

RESUMEN

Circulating extracellular vesicle (EV)-derived microRNAs (miRNAs) are now considered the next generation of cancer "theranostic" tools, with strong clinical relevance. Although their potential in breast cancer diagnosis has been widely reported, further studies are still required to address this challenging issue. The present study examined the expression profiles of EV-packaged miRNAs to identify novel miRNA signatures in breast cancer and verified their diagnostic accuracy. Circulating EVs were isolated from healthy controls and breast cancer patients and characterized following the MISEV 2018 guidelines. RNA-sequencing and real-time PCR showed that miRNA-27a and miRNA-128 were significantly down-regulated in patient-derived EVs compared to controls in screening and validation cohorts. Bioinformatics analyses of miRNA-target genes indicated several enriched biological processes/pathways related to breast cancer. Receiver operating characteristic (ROC) curves highlighted the ability of these EV-miRNAs to distinguish breast cancer patients from non-cancer controls. According to other reports, the levels of EV-miRNA-27a and EV-miRNA-128 are not associated with their circulating ones. Finally, evidence from the studies included in our systematic review underscores how the expression of these miRNAs in biofluids is still underinvestigated. Our findings unraveled the role of serum EV-derived miRNA-27a and miRNA-128 in breast cancer, encouraging further investigation of these two miRNAs within EVs towards improved breast cancer detection.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , MicroARNs/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361728

RESUMEN

Tumor extracellular vesicles (EVs), as endocytic vesicles able to transport nucleic acids, proteins, and metabolites in recipient cells, have been recognized fundamental mediators of cell-to-cell communication in breast cancer. The biogenesis and release of EVs are highly regulated processes and both the quantity of EVs and their molecular cargo might reflect the metabolic state of the producing cells. We recently demonstrated that the adipokine leptin, whose circulating levels correlate with adipose tissue expansion, is an inducer of EV release from breast cancer cells. Here, we show a specific proteomic signature of EVs released by MCF-7 breast cancer cells grown in the presence of leptin (Lep-EVs), in attempt to find additional molecular effectors linking obesity to breast cancer biology. An analysis of the proteomic profile of Lep-EVs by LC-MS/MS revealed a significant enrichment in biological processes, molecular functions, and cellular components mainly related to mitochondrial machineries and activity, compared to protein content of EVs from untreated breast cancer cells. Metabolic investigations, carried out to assess the autocrine effects of these vesicles on breast cancer cells, revealed that Lep-EVs were able to increase ATP levels in breast cancer cells. This result is associated with increased mitochondrial respiration evaluated by Seahorse analyzer, supporting the concept that Lep-EVs can modulate MCF-7 breast cancer cell oxidative metabolism. Moreover, taking into account the relevance of tumor immune cell crosstalk in the tumor microenvironment (TME), we analyzed the impact of these vesicles on macrophage polarization, the most abundant immune component in the breast TME. We found that tumor-derived Lep-EVs sustain the polarization of M0 macrophages, derived from the human THP-1 monocytic cells, into M2-like tumor-associated macrophages, in terms of metabolic features, phagocytic activity, and increased expression of CD206-positive population. Overall, our results indicate that leptin by inducing the release of EV-enriched in mitochondrial proteins may control the metabolism of MCF-7 breast cancer cells as well as that of macrophages. Characterization of tumor-derived EV protein cargo in an obesity-associated milieu, such as in the presence of elevated leptin levels, might allow identifying unique features and specific metabolic mechanisms useful to develop novel therapeutic approaches for treatment of breast cancer, especially in obese patients.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Femenino , Proteómica , Neoplasias de la Mama/metabolismo , Leptina/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Vesículas Extracelulares/metabolismo , Obesidad/metabolismo , Microambiente Tumoral
5.
Am J Pathol ; 189(3): 687-698, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30610844

RESUMEN

Although in past decades the adipokine leptin and its own receptor have been considered as significant cancer biomarkers, their potential involvement in human testicular seminoma growth and progression remains unexplored. Here, we showed that the expression of leptin and its receptor was significantly higher in human testicular seminoma compared with normal adult testis. Human seminoma cell line TCam-2 also expressed leptin along with the long and short isoforms of leptin receptor, and in response to leptin treatment showed enhanced activation of its downstream effectors. In line with these results, leptin stimulation significantly increased the proliferation and migration of TCam-2 cells. Treatment of TCam-2 cells with the peptide Leu-Asp-Phe-Ile (LDFI), a full leptin-receptor antagonist, completely reversed the leptin-mediated effects on cell growth and motility as well as reduced the expression of several leptin-induced target genes. More importantly, the in vivo xenograft experiments showed that LDFI treatment markedly decreased seminoma tumor growth. Interestingly, LDFI-treated tumors showed reduced levels of the proliferation marker Ki-67 as well as decreased expression of leptin-regulated genes. Taken together, these data identify, for the first time, leptin as a key factor able to affect testicular seminoma behavior, highlighting leptin receptor as a potential target for novel potential treatments in this type of cancer.


Asunto(s)
Leptina/farmacocinética , Proteínas de Neoplasias/agonistas , Péptidos/farmacología , Receptores de Leptina/agonistas , Seminoma/tratamiento farmacológico , Neoplasias Testiculares/tratamiento farmacológico , Adulto , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Leptina/química , Masculino , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Péptidos/química , Receptores de Leptina/metabolismo , Seminoma/metabolismo , Seminoma/patología , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352766

RESUMEN

Multiple lines of evidence indicate that activation of the peroxisome proliferator-activated receptor γ (PPARγ) by natural or synthetic ligands exerts tumor suppressive effects in different types of cancer, including breast carcinoma. Over the past decades a new picture of breast cancer as a complex disease consisting of neoplastic epithelial cells and surrounding stroma named the tumor microenvironment (TME) has emerged. Indeed, TME is now recognized as a pivotal element for breast cancer development and progression. Novel strategies targeting both epithelial and stromal components are under development or undergoing clinical trials. In this context, the aim of the present review is to summarize PPARγ activity in breast TME focusing on the role of this receptor on both epithelial/stromal cells and extracellular matrix components of the breast cancer microenvironment. The information provided from the in vitro and in vivo research indicates PPARγ ligands as potential agents with regards to the battle against breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , PPAR gamma/metabolismo , Microambiente Tumoral/inmunología , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Ligandos , Transducción de Señal
7.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823947

RESUMEN

Aromatase inhibitors (AIs) represent the standard anti-hormonal therapy for post-menopausal estrogen receptor-positive breast cancer, but their efficacy is limited by the emergence of AI resistance (AIR). Exosomes act as vehicles to engender cancer progression and drug resistance. The goal of this work was to study exosome contribution in AIR mechanisms, using estrogen-dependent MCF-7 breast cancer cells as models and MCF-7 LTED (Long-Term Estrogen Deprived) subline, modeling AIR. We found that exosome secretion was significantly increased in MCF-7 LTED cells compared to MCF-7 cells. MCF-7 LTED cells also exhibited a higher amount of exosomal RNA and proteins than MCF-7 cells. Proteomic analysis revealed significant alterations in the cellular proteome. Indeed, we showed an enrichment of proteins frequently identified in exosomes in MCF-7 LTED cells. The most up-regulated proteins in MCF-7 LTED cells were represented by Rab GTPases, important vesicle transport-regulators in cancer, that are significantly mapped in "small GTPase-mediated signal transduction", "protein transport" and "vesicle-mediated transport" Gene Ontology categories. Expression of selected Rab GTPases was validated by immunoblotting. Collectively, we evidence, for the first time, that AIR breast cancer cells display an increased capability to release exosomes, which may be associated with an enhanced Rab GTPase expression. These data provide the rationale for further studies directed at clarifying exosome's role on endocrine therapy, with the aim to offer relevant markers and druggable therapeutic targets for the management of hormone-resistant breast cancers.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Exosomas/metabolismo , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Análisis por Conglomerados , Resistencia a Antineoplásicos/efectos de los fármacos , Estrógenos/deficiencia , Exosomas/ultraestructura , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Proteómica , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismo
8.
FASEB J ; 32(8): 4343-4355, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29513571

RESUMEN

Adipose tissue is a metabolic and endocrine organ that secretes bioactive molecules called adipocytokines. Among these, adiponectin has a crucial role in obesity-associated breast cancer. The key molecule of adiponectin signaling is AMPK, which is mainly activated by liver kinase B1 (LKB1). Here, we demonstrated that estrogen receptor-α (ERα)/LKB1 interaction may negatively interfere with the LKB1 capability to phosphorylate AMPK and inhibit its downstream signaling TSC2/mTOR/p70S6k. In adiponectin-treated MCF-7 cells, AMPK signaling was not working, resulting in its downstream target acetyl-CoA carboxylase (ACC) being still active. In contrast, in MDA-MB-231 cells, AMPK and ACC phosphorylation was enhanced by adiponectin, inhibiting lipogenesis and cell growth. Upon adiponectin, ERα signaling switched the energy balance of breast cancer cells toward a lipogenic phenotype. Therefore, adiponectin played an inhibitory role on ERα-negative cell growth and progression in vitro and in vivo. In contrast, low adiponectin levels, similar to those circulating in obese patients, acted on ERα-positive cells as a growth factor, stimulating proliferation. The latter effect was blunted in vivo by high adiponectin concentration. All this may have translational relevance, addressing how the handling of adiponectin, as a therapeutic tool in breast cancer treatment, needs to be carefully considered in ERα-positive obese patients, where circulating levels of this adipocytokine are relatively low. In other words, in ERα-positive breast cancer obese patients, higher adiponectin doses should be administered with respect to ERα-negative breast cancer, also opportunely combined with antiestrogen therapy. -Mauro, L., Naimo, G. D., Gelsomino, L., Malivindi, R., Bruno, L., Pellegrino, M., Tarallo, R., Memoli, D., Weisz, A., Panno, M. L., Andò, S. Uncoupling effects of estrogen receptor α on LKB1/AMPK interaction upon adiponectin exposure in breast cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adipoquinas/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos
9.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052147

RESUMEN

Obesity, characterized by excess body weight, is now accepted as a hazardous health condition and an oncogenic factor. In different epidemiological studies obesity has been described as a risk factor in several malignancies. Some biological mechanisms that orchestrate obesity-cancer interaction have been discovered, although others are still not completely understood. The unbalanced secretion of biomolecules, called "adipokines", released by adipocytes strongly influences obesity-related cancer development. Among these adipokines, adiponectin exerts a critical role. Physiologically adiponectin governs glucose levels and lipid metabolism and is fundamental in the reproductive system. Low adiponectin circulating levels have been found in obese patients, in which its protective effects were lost. In this review, we summarize the epidemiological, in vivo and in vitro data in order to highlight how adiponectin may affect obesity-associated female cancers.


Asunto(s)
Adiponectina/metabolismo , Neoplasias de la Mama/metabolismo , Obesidad/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias de la Mama/epidemiología , Femenino , Humanos , Obesidad/epidemiología , Neoplasias Ováricas/epidemiología , Transducción de Señal
10.
Am J Pathol ; 186(5): 1328-39, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26968343

RESUMEN

Leydig cell tumors are the most frequent interstitial neoplasms of the testis with increased incidence in recent years. They are hormonally active and are considered one of the steroid-secreting tumors. Although usually benign, the malignant phenotype responds poorly to conventional chemotherapy or radiation, highlighting the need to identify new therapeutic targets for treatment. Here, we identified a novel glucocorticoid-mediated mechanism that controls cell growth in Leydig cell tumors. We found that a synthetic glucocorticoid receptor agonist, dexamethasone, reduces cell proliferation in rat Leydig tumor cells by decreasing the expression and the enzymatic activity of the estrogen-producing enzyme aromatase. This inhibitory effect relies on the ability of activated glucocorticoid receptor to regulate the aromatase gene transcriptional activity through the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors to a newly identified putative glucocorticoid responsive element within the aromatase promoter II. Our in vivo studies reveal a reduction of tumor growth, after dexamethasone treatment, in animal xenografts. Tumors from dexamethasone-treated mice exhibit a decrease in the expression of the proliferation marker Ki-67 and the aromatase enzyme. Our data demonstrate that activated glucocorticoid receptor, decreasing aromatase expression, induces Leydig tumor regression both in vitro and in vivo, suggesting that glucocorticoid receptor might be a potential target for the therapy of Leydig cell tumors.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Dexametasona/farmacología , Tumor de Células de Leydig/patología , Receptores de Glucocorticoides/antagonistas & inhibidores , Neoplasias Testiculares/patología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Tumor de Células de Leydig/tratamiento farmacológico , Masculino , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Testiculares/tratamiento farmacológico
11.
Breast Cancer Res Treat ; 157(2): 253-265, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27178332

RESUMEN

The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Mutación , Receptores de Somatomedina/genética , Tamoxifeno/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Modelos Genéticos , Receptor IGF Tipo 1 , Receptores de Estrógenos/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal , Tamoxifeno/uso terapéutico
12.
J Cell Mol Med ; 19(5): 1122-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25721149

RESUMEN

The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I-III. Site I is crucial for the formation of an active leptin-leptin receptor complex and in its subsequent activation. Amino acids 39-42 (Leu-Asp-Phe-Ile- LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild-type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin-induced anchorage-dependent and -independent growth as well as the migration of ERα-positive (MCF-7) and -negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin-mediated up-regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women.


Asunto(s)
Neoplasias de la Mama/prevención & control , Proliferación Celular/efectos de los fármacos , Leptina/antagonistas & inhibidores , Oligopéptidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Secuencia de Aminoácidos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Immunoblotting , Leptina/genética , Leptina/metabolismo , Células MCF-7 , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oligopéptidos/química , Fosforilación/efectos de los fármacos , Polietilenglicoles/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Leptina/antagonistas & inhibidores , Receptores de Leptina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Carga Tumoral/efectos de los fármacos
13.
Breast Cancer Res Treat ; 154(2): 225-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26487496

RESUMEN

Tamoxifen (Tam) resistance represents a significant clinical problem in estrogen receptor (ER) α-positive breast cancer. We previously showed that decreased expression of Rho guanine nucleotide dissociation inhibitor (Rho GDI) α, a negative regulator of the Rho GTPase pathway, is associated with Tam resistance. We now discover that androgen receptor (AR) is overexpressed in cells with decreased Rho GDIα and seek to determine AR's contribution to resistance. We engineered ERα-positive cell lines with stable knockdown (KD) of Rho GDIα (KD cells). Resistance mechanisms were examined using microarray profiling, protein-interaction studies, growth and reporter gene assays, and Western blot analysis combined with a specific AR antagonist and other signaling inhibitors. Tam-resistant tumors and cell lines with low Rho GDIα levels exhibited upregulated AR expression. Microarray of Rho GDIα KD cells indicated that activation of EGFR and ERα was associated with Tam treatment. When AR levels were elevated, interaction between AR and EGFR was detected. Constitutive and Tam-induced phosphorylation of EGFR and ERK1/2 was blocked by the AR antagonist Enzalutamide, suggesting that AR-mediated EGFR activation was a mechanism of resistance in these cells. Constitutive ERα phosphorylation and transcriptional activity was inhibited by Enzalutamide and the EGFR inhibitor gefitinib, demonstrating that AR-mediated EGFR signaling activated ERα. Tam exhibited agonist activity in AR overexpressing cells, stimulating ERα transcriptional activity and proliferation, which was blocked by Enzalutamide and gefitinib. We describe a novel model of AR-mediated Tam resistance through activation of EGFR signaling leading to ER activation in ERα-positive cells with low expression of Rho GDIα.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores ErbB/genética , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores Androgénicos/metabolismo , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Unión Proteica , Receptores Androgénicos/genética , Tamoxifeno/uso terapéutico , Activación Transcripcional , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo
14.
Breast Cancer Res Treat ; 150(3): 535-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25820519

RESUMEN

The purpose of this study was to discover novel nuclear receptor targets in triple-negative breast cancer. Expression microarray, Western blot, qRT-PCR analyses, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, and statistical analysis were performed in this study. We performed microarray analysis using 227 triple-negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRß) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRß low expressing patients were associated with poor outcome. We evaluated the role of TRß in triple-negative breast cancer cell lines representing group 5 tumors. Knockdown of TRß increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRß protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRß knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRß-specific agonists enhanced TRß expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. TRß represents a novel nuclear receptor target in triple-negative breast cancer; low TRß levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRß-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRß's effects on response to chemotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/farmacología , Línea Celular Tumoral , Docetaxel , Doxorrubicina/farmacología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Pronóstico , Transducción de Señal/efectos de los fármacos , Taxoides/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
15.
Biomolecules ; 13(7)2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37509120

RESUMEN

Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.


Asunto(s)
Leptina , Neoplasias , Humanos , Leptina/metabolismo , Tejido Adiposo/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Adipoquinas/metabolismo , Neoplasias/metabolismo
16.
Nutrients ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37447165

RESUMEN

Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may mimic the obesity condition in studies on BC cell lines conducted in vitro. Here, we report a transcriptomic analysis on MCF-7 BC cells exposed to adipocyte-derived CM and focus on the predictive functional relevance that CM-affected pathways/processes and related biomarkers (BMs) may have in BC response to obesity. CM was demonstrated to increase cell proliferation, motility and invasion as well as broadly alter the transcript profiles of MCF-7 cells by significantly modulating 364 genes. Bioinformatic functional analyses unraveled the presence of five highly relevant central hubs in the direct interaction networks (DIN), and Kaplan-Meier analysis sorted the CCAAT/enhancer binding protein beta (CEBP-ß) and serine/threonine-protein kinase PLK1 (PLK1) as clinically significant biomarkers in BC. Indeed, CEBP-ß and PLK1 negatively correlated with BC overall survival and were up-regulated by adipocyte-derived CM. In addition to their known involvement in cell proliferation and tumor progression, our work suggests them as a possible "deus ex machina" in BC response to fat tissue humoral products in obese women.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Células MCF-7 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Proliferación Celular , Línea Celular Tumoral
17.
J Cell Physiol ; 227(10): 3363-72, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22213398

RESUMEN

Breast cancer is the most frequent tumor and a major cause of death among women. Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of hormonal antiestrogen therapies. Unfortunately, not all therapeutic modalities are efficacious and it is imperative to develop new effective antitumoral drugs. Oldenlandia diffusa (OD) is a well-known medicinal plant used to prevent and treat many disorders, especially cancers. The aim of this study was to investigate the effects of OD extracts on breast cancer cell proliferation. We observed that OD extracts strongly inhibited anchorage-dependent and -independent cell growth and induced apoptosis in estrogen receptor alpha (ERα)-positive breast cancer cells, whereas proliferation and apoptotic responses of MCF-10A normal breast epithelial cells were unaffected. Mechanistically, OD extracts enhance the tumor suppressor p53 expression as a result of an increased binding of ERα/Sp1 complex to the p53 promoter region. Finally, we isolated ursolic and oleanolic acids as the bioactive compounds able to upregulate p53 expression and inhibit breast cancer cell growth. These acids were greatly effective in reducing tamoxifen-resistant growth of a derivative MCF-7 breast cancer cell line resistant to the antiestrogen treatment. Our results evidence how OD, and its bioactive compounds, exert antiproliferative and apoptotic effects selectively in ERα-positive breast cancer cells, highlighting the potential use of these herbal extracts as breast cancer preventive and/or therapeutic agents.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Inmunoglobulinas/genética , Oldenlandia/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Moduladores de los Receptores de Estrógeno/farmacología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoglobulinas/metabolismo , Ácido Oleanólico/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Tamoxifeno/farmacología , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Triterpenos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ácido Ursólico
19.
Obes Rev ; 23(2): e13358, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34559450

RESUMEN

The incidence of obesity, a recognized risk factor for various metabolic and chronic diseases, including numerous types of cancers, has risen dramatically over the recent decades worldwide. To date, convincing research in this area has painted a complex picture about the adverse impact of high body adiposity on breast cancer onset and progression. However, an emerging but overlooked issue of clinical significance is the limited efficacy of the conventional endocrine therapies with selective estrogen receptor modulators (SERMs) or degraders (SERDs) and aromatase inhibitors (AIs) in patients affected by breast cancer and obesity. The mechanisms behind the interplay between obesity and endocrine therapy resistance are likely to be multifactorial. Therefore, what have we actually learned during these years and which are the main challenges in the field? In this review, we will critically discuss the epidemiological evidence linking obesity to endocrine therapeutic responses and we will outline the molecular players involved in this harmful connection. Given the escalating global epidemic of obesity, advances in understanding this critical node will offer new precision medicine-based therapeutic interventions and more appropriate dosing schedule for treating patients affected by obesity and with breast tumors resistant to endocrine therapies.


Asunto(s)
Neoplasias de la Mama , Inhibidores de la Aromatasa/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Receptores de Estrógenos , Moduladores Selectivos de los Receptores de Estrógeno/efectos adversos
20.
Cancers (Basel) ; 13(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800302

RESUMEN

Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA