Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(1): e202302619, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37788976

RESUMEN

The current work focuses on the investigation of two functionalized naphthyridine derivatives, namely ODIN-EtPh and ODIN-But, to gain insights into the hydrogen bond-assisted H-aggregate formation and its impact on the optical properties of ODIN molecules. By employing a combination of X-ray and electron crystallography, absorption and emission spectroscopy, time resolved fluorescence and ultrafast pump-probe spectroscopy (visible and infrared) we unravel the correlation between the structure and light-matter response, with a particular emphasis on the influence of the polarity of the surrounding environment. Our experimental results and simulations confirm that in polar and good hydrogen-bond acceptor solvents (DMSO), the formation of dimers for ODIN derivatives is strongly inhibited. The presence of a phenyl group linked to the ureidic unit favors the folding of ODIN derivatives (forming an intramolecular hydrogen bond) leading to the stabilization of a charge-transfer excited state which almost completely quenches its fluorescence emission. In solvents with a poor aptitude for forming hydrogen bonds, the formation of dimers is favored and gives rise to H aggregates, with a consequent considerable reduction in the fluorescence emission. The urea-bound phenyl group furtherly stabilizes the dimers in chloroform.

2.
Liver Transpl ; 28(7): 1173-1185, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35100468

RESUMEN

The combined approach of ex situ normothermic machine perfusion (NMP) and nanotechnology represents a strategy to mitigate ischemia/reperfusion injury in liver transplantation (LT). We evaluated the uptake, distribution, and efficacy of antioxidant cerium oxide nanoparticles (nanoceria) during normothermic perfusion of discarded human livers. A total of 9 discarded human liver grafts were randomized in 2 groups and underwent 4 h of NMP: 5 grafts were treated with nanoceria conjugated with albumin (Alb-NC; 50 µg/ml) and compared with 4 untreated grafts. The intracellular uptake of nanoceria was analyzed by electron microscopy (EM) and inductively coupled plasma-mass spectrometry (ICP-MS). The antioxidant activity of Alb-NC was assayed in liver biopsies by glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) assay, telomere length, and 4977-bp common mitochondrial DNA deletion (mtDNA4977 deletion). The cytokine profile was evaluated in perfusate samples. EM and ICP-MS confirmed Alb-NC internalization, rescue of mitochondrial phenotype, decrease of lipid droplet peroxidation, and lipofuscin granules in the treated grafts. Alb-NC exerted an antioxidant activity by increasing GSH levels (percentage change: +94% ± 25%; p = 0.01), SOD (+17% ± 4%; p = 0.02), and CAT activity (51% ± 23%; p = 0.03), reducing the occurrence of mtDNA4977 deletion (-67.2% ± 11%; p = 0.03), but did not affect cytokine release. Alb-NC during ex situ perfusion decreased oxidative stress, upregulating graft antioxidant defense. They could be a tool to improve quality grafts during NMP and represent an antioxidant strategy aimed at protecting the graft against reperfusion injury during LT.


Asunto(s)
Trasplante de Hígado , Nanopartículas , Daño por Reperfusión , Antioxidantes , Cerio , Isquemia Fría/métodos , Citocinas , ADN Mitocondrial , Humanos , Hígado/patología , Trasplante de Hígado/efectos adversos , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Perfusión/métodos , Proyectos Piloto , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Superóxido Dismutasa
3.
Chemistry ; 28(72): e202202977, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36161363

RESUMEN

The dynamic behavior of supramolecular organic frameworks (SOFs) based on the rigid tetra-4-(4-pyridyl)phenylmethane (TPPM) organic tecton has been elucidated through 3D electron diffraction, X-ray powder diffraction and differential scanning calorimetry (DSC) analysis. The SOF undergoes a reversible single-crystal-to-single-crystal transformation when exposed to vapours of selected organic solvents, moving from a closed structure with isolated small voids to an expanded structure with solvated channels along the b axis. The observed selectivity is dictated by the fitting of the guest in the expanded SOF, following the degree of packing coefficient. The effect of solvent uptake on TPPM solid-state fluorescence was investigated, evidencing a significant variation in the emission profile only in the presence of chloroform.

4.
Chemphyschem ; 22(15): 1631-1637, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34117821

RESUMEN

Herein we demonstrate the prowess of the 3D electron diffraction approach by unveiling the structure of terrylene, the third member in the series of peri-condensed naphthalene analogues, which has eluded structure determination for 65 years. The structure was determined by direct methods using electron diffraction data and corroborated by dispersion-inclusive density functional theory optimizations. Terrylene crystalizes in the monoclinic space group P21 /a, arranging in a sandwich-herringbone packing motif, similar to analogous compounds. Having solved the crystal structure, we use many-body perturbation theory to evaluate the excited-state properties of terrylene in the solid-state. We find that terrylene is a promising candidate for intermolecular singlet fission, comparable to tetracene and rubrene.

5.
J Am Chem Soc ; 142(22): 10198-10211, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32374173

RESUMEN

We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.

6.
Inorg Chem ; 59(1): 548-554, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31829568

RESUMEN

An effort to synthesize the Cu(I) variant of a lead-free double perovskite isostructural with Cs2AgInCl6 resulted in the formation of Cs3Cu4In2Cl13 nanocrystals with an unusual structure, as revealed by single-nanocrystal three-dimensional electron diffraction. These nanocrystals adopt a A2BX6 structure (K2PtCl6 type, termed vacancy ordered perovskite) with tetrahedrally coordinated Cu(I) ions. In the structure, 25% of the A sites are occupied by [Cu4Cl]3+ clusters (75% by Cs+), and the B sites are occupied by In3+. Such a Cs3Cu4In2Cl13 compound prepared at the nanoscale is not known in the bulk and is an example of a multinary metal halide with inorganic cluster cations residing in A sites. The stability of the compound was supported by density functional theory calculations that also revealed that its bandgap is direct but parity forbidden. The existence of the Cs3Cu4In2Cl13 structure demonstrates that small inorganic cluster cations can occupy A sites in multinary metal halides.

7.
Angew Chem Int Ed Engl ; 58(32): 10919-10922, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31210373

RESUMEN

Orthocetamol is a regioisomer of the well-known pain medication paracetamol and a promising analgesic and an anti-arthritic medicament itself. However, orthocetamol cannot be grown as single crystals suitable for X-ray diffraction, so its crystal structure has remained a mystery for more than a century. Here, we report the ab-initio structure determination of orthocetamol obtained by 3D electron diffraction, combining a low-dose acquisition method and a dedicated single-electron detector for recording the diffracted intensities. The structure is monoclinic, with a pseudo-tetragonal cell that favors multiple twinning on a scale of a few tens of nanometers. The successful application of 3D electron diffraction to orthocetamol introduces a new gold standard of total structure solution in all cases where X-ray diffraction and electron-microscope imaging methods fail.


Asunto(s)
Acetaminofén/química , Electrones , Acetaminofén/análogos & derivados , Cristalización , Modelos Moleculares , Estructura Molecular , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie , Difracción de Rayos X
8.
Inorg Chem ; 57(16): 10241-10248, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30063352

RESUMEN

We investigated pseudo-cubic Cu2- xTe nanosheets using electron diffraction tomography and high-resolution HAADF-STEM imaging. The structure of this metastable nanomaterial, which has a strong localized surface plasmon resonance in the near-infrared region, was determined ab initio by 3D electron diffraction data recorded in low-dose nanobeam precession mode, using a new generation background-free single-electron detector. The presence of two different, crystallographically defined modulations creates a 3D connected vacancy channel system, which may account for the strong plasmonic response of this material. Moreover, a pervasive rotational twinning is observed for nanosheets as thin as 40 nm, resulting in a tetragonal pseudo-symmetry.

9.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364852

RESUMEN

With the increasing interest in the potential benefits of nanotechnologies, concern is still growing that they may present emerging risks for workers. Various strategies have been developed to assess the exposure to nano-objects and their agglomerates and aggregates (NOAA) in the workplace, integrating different aerosol measurement instruments and taking into account multiple parameters that may influence NOAA toxicity. The present study proposes a multi-metric approach for measuring and sampling NOAA in the workplace, applied to three case studies in laboratories each dedicated to materials with different shapes and dimensionalities: graphene, nanowires, and nanoparticles. The study is part of a larger project with the aim of improving risk management tools in nanomaterials research laboratories. The harmonized methodology proposed by the Organization for Economic Cooperation and Development (OECD) has been applied, including information gathering about materials and processes, measurements with easy-to-use and hand-held real-time devices, air sampling with personal samplers, and off-line analysis using scanning electron microscopy. Significant values beyond which an emission can be attributed to the NOAA production process were identified by comparison of the particle number concentration (PNC) time series and the corresponding background levels in the three laboratories. We explored the relations between background PNC and microclimatic parameters. Morphological and elemental analysis of sampled filters was done to identify possible emission sources of NOAA during the production processes: rare particles, spherical, with average diameter similar to the produced NOAA were identified in the nanoparticles laboratory, so further investigation is recommended to confirm the potential for worker exposure. In conclusion, the information obtained should provide a valuable basis for improving risk management strategies in the laboratory at work.


Asunto(s)
Contaminantes Ocupacionales del Aire , Laboratorios , Nanoestructuras , Exposición Profesional , Lugar de Trabajo , Monitoreo del Ambiente/métodos , Humanos , Nanoestructuras/efectos adversos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Salud Laboral
10.
Biochim Biophys Acta Gen Subj ; 1861(2): 386-395, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864151

RESUMEN

BACKGROUND: The design of efficient nerve conduits able to sustain the axonal outgrowth and its guidance towards appropriate targets is of paramount importance in nerve tissue engineering. METHODS: In this work, we propose the preparation of highly aligned nanocomposite fibers of gelatin/cerium oxide nanoparticles (nanoceria), prepared by electrospinning. Nanoceria are powerful self-regenerative antioxidant nanomaterials, that behave as strong reactive oxygen species scavengers, and among various beneficial effects, they have been proven to inhibit the cell senescence and to promote the neurite sprouting. RESULTS: After a detailed characterization of the developed substrates, they have been tested on neuron-like SH-SY5Y cells, demonstrating strong antioxidant properties and beneficial multi-cue effects in terms of neurite development and alignment. CONCLUSIONS: Obtained findings suggest efficiency of the proposed substrates in providing combined topographical stimuli and antioxidant effects to cultured cells. GENERAL SIGNIFICANCE: Proposed nanocomposite scaffolds represent a promising approach for nerve tissue engineering and regenerative medicine.


Asunto(s)
Antioxidantes/química , Cerio/química , Gelatina/química , Nanocompuestos/química , Nanofibras/química , Regeneración Nerviosa/efectos de los fármacos , Antioxidantes/administración & dosificación , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Células Cultivadas , Cerio/administración & dosificación , Gelatina/administración & dosificación , Humanos , Nanocompuestos/administración & dosificación , Nanofibras/administración & dosificación , Nanopartículas/administración & dosificación , Nanopartículas/química , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido
11.
Nano Lett ; 16(11): 7183-7190, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27760298

RESUMEN

Au-catalyzed III-V nanowire heterostructures based on the group III interchange usually grow straight only in one of the two growth sequences, whereas the other sequence produces kinked geometries; thus, the realization of double heterostructures remains challenging. Here, we investigate the growth of Au-assisted InAs-GaAs and GaAs-InAs axial nanowire heterostructures. A detailed study of the heterostructure morphology as a function of growth parameters and chemical composition of the catalyst nanoparticle is performed by means of scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis. Our results clearly demonstrate that the nanoparticle composition, rather than other growth parameters, as postulated so far, controls the growth mode and the resulting nanowire morphology. Although GaAs easily grows straight on InAs, straight growth of InAs on GaAs is achieved only if the nanoparticle composition is properly tuned. We find that straight InAs segments on GaAs require high group III-to-Au ratios in the nanoparticle (greater than 0.8); otherwise, the droplet wets the sidewalls and the nanowire kinks. We discuss the observed behavior within a theoretical model that relates the nanoparticle stability to the group III-to-Au ratio. Based on this finding, we demonstrate the growth of straight nanowire heterostructures for both sequences. The proposed strategy can be extended to other III-V nanowire heterostructures based on the group III interchange, allowing for straight morphology regardless of the growth sequence, and ultimately for designing nanowire heterostructures with the required properties for different applications.

12.
J Am Chem Soc ; 138(32): 10116-9, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27478889

RESUMEN

In this work a new ultrafast data collection strategy for electron diffraction tomography is presented that allows reducing data acquisition time by one order of magnitude. This methodology minimizes the radiation damage of beam-sensitive materials, such as microporous materials. This method, combined with the precession of the electron beam, provides high quality data enabling the determination of very complex structures. Most importantly, the implementation of this new electron diffraction methodology is easily affordable in any modern electron microscope. As a proof of concept, we have solved a new highly complex zeolitic structure named ITQ-58, with a very low symmetry (triclinic) and a large unit cell volume (1874.6 Å(3)), containing 16 silicon and 32 oxygen atoms in its asymmetric unit, which would be very difficult to solve with the state of the art techniques.

13.
Nanotechnology ; 27(41): 415201, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27586817

RESUMEN

In this article we demonstrate type-II band alignment at the wurtzite/zinc-blende hetero-interface in InAs polytype nanowires using resonance Raman measurements. Nanowires were grown with an optimum ratio of the above mentioned phases, so that in the electronic band alignment of such NWs the effect of the difference in the crystal structure dominates over other perturbing effects (e.g. interfacial strain, confinement of charge carriers and band bending due to space charge). Experimental results are compared with the band alignment obtained from density functional theory calculations. In resonance Raman measurements, the excitation energies in the visible range probe the band alignment formed by the E 1 gap of wurtzite and zinc-blende phases. However, we expect our claim to be valid also for band alignment near the fundamental gap at the heterointerface.

14.
Chemistry ; 21(50): 18209-17, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26559381

RESUMEN

Hybrid mesoporous organosilica exhibiting crystal-like order in the walls provided an ideal channel reaction vessel for the confined polymerization of acrylonitrile (PAN). The resulting high-molecular-mass PAN fills the channels at high yield and forms an ordered nanostructure of polymer nanobundles enclosed into the hybrid matrix. The in situ thermal transformation of PAN into rigid polyconjugated and, eventually, into condensed polyaromatic carbon nanofibers, retains the periodic architecture. Simultaneously, the matrix evolves showing the fusion of the p-phenylene rings and the cleavage of carbonsilicon bonds: this gives rise to graphitic-carbon/silica nanocomposites containing hyper-oxydrylated silica nanophases. Interestingly, the 3D hexagonal mesostructure survives in the carbonaceous material. The exploitation of porous materials of high capacity and a hybrid nature, for polymerization in the confined state, followed by high temperature treatments, allowed us to achieve unique and precisely fabricated nanostructures, thus paving the way for the construction of fine-tuned electronic and light-harvesting materials.

15.
Proc Natl Acad Sci U S A ; 109(34): 13509-14, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869705

RESUMEN

Carbon-bearing solids, fluids, and melts in the Earth's deep interior may play an important role in the long-term carbon cycle. Here we apply synchrotron X-ray single crystal micro-diffraction techniques to identify and characterize the high-pressure polymorphs of dolomite. Dolomite-II, observed above 17 GPa, is triclinic, and its structure is topologically related to CaCO(3)-II. It transforms above 35 GPa to dolomite-III, also triclinic, which features carbon in [3 + 1] coordination at the highest pressures investigated (60 GPa). The structure is therefore representative of an intermediate between the low-pressure carbonates and the predicted ultra-high pressure carbonates, with carbon in tetrahedral coordination. Dolomite-III does not decompose up to the melting point (2,600 K at 43 GPa) and its thermodynamic stability demonstrates that this complex phase can transport carbon to depths of at least up to 1,700 km. Dolomite-III, therefore, is a likely occurring phase in areas containing recycled crustal slabs, which are more oxidized and Ca-enriched than the primitive lower mantle. Indeed, these phases may play an important role as carbon carriers in the whole mantle carbon cycling. As such, they are expected to participate in the fundamental petrological processes which, through carbon-bearing fluids and carbonate melts, will return carbon back to the Earth's surface.


Asunto(s)
Carbonato de Calcio/química , Ciclo del Carbono , Carbono/química , Magnesio/química , Calcio/química , Cristalización , Diamante , Planeta Tierra , Rayos Láser , Presión , Temperatura , Termodinámica
16.
Nano Lett ; 14(8): 4901-6, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25026051

RESUMEN

We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

17.
Nanotechnology ; 25(20): 205601, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24785358

RESUMEN

The crystal structure of GaP nanowires grown by Au-assisted chemical beam epitaxy was investigated as a function of group V flux and growth temperature. By increasing the tertiarybutyl phosphine flux we obtained nanowires with a stacking defect-free wurtzite crystal structure. Variation of growth temperature also had a profound impact on the crystal structure. Lowering the growth temperature from 600 to 560 °C and keeping constant both triethylgallium and tertiarybutyl phosphine precursor fluxes, the crystal structure of GaP NWs was drastically improved from a highly defective intergrowth of zinc-blende and wurtzite to a wurtzite crystal structure free of stacking defects. These results are compared to current literature on GaP NW growth, and we suggest that the low V/III ratio is the key ingredient for the high crystal quality of our GaP nanowires.

18.
Acta Crystallogr C Struct Chem ; 80(Pt 6): 177-178, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38835200

RESUMEN

Aragon et al. [Acta Cryst. (2024), C80, 179-189], by reporting the discussion and the final conclusions of a round table held during a symposium at the National Center for CryoEM Access and Training, well describe all the advances that have been made for the application of 3D ED/MicroED to pharmaceutical and macromolecular nanocrystals and propose possible future scenarios.

19.
Cryst Growth Des ; 24(8): 3246-3255, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659659

RESUMEN

Mechanochemical synthesis is a powerful approach to obtain new materials, limiting costs, and times. However, defected and submicrometrical-sized crystal products make critical their characterization through classical single-crystal X-ray diffraction. A valid alternative is represented by three-dimensional (3D) electron diffraction, in which a transmission electron microscope is used, like a diffractometer. This work matches a green water-based mechanochemical synthesis and 3D electron diffraction to obtain and characterize a Cu-based protocatechuate metal-organic framework (PC-MOF). Its structure has been fully refined through dynamical diffraction theory, and free water molecules could be detected in the channels of the framework. Thermal characterization, focused on the dehydration profile determination, leads to the formation of a novel high-temperature 2D coordination polymer, fully solved with 3D electron diffraction data. At last, the strong activity of the PC-MOF against cationic dyes like methylene blue has been reported.

20.
ACS Nano ; 18(3): 2047-2065, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38166155

RESUMEN

The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.


Asunto(s)
Condrogénesis , Proteómica , Nanogeles , Hidrogeles/farmacología , Diferenciación Celular , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA