Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(31): 5623-5641, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37474307

RESUMEN

Following incomplete spinal cord injury in animals, including humans, substantial locomotor recovery can occur. However, functional aspects of locomotion, such as negotiating obstacles, remains challenging. We collected kinematic and electromyography data in 10 adult cats (5 males, 5 females) before and at weeks 1-2 and 7-8 after a lateral mid-thoracic hemisection on the right side of the cord while they negotiated obstacles of three different heights. Intact cats always cleared obstacles without contact. At weeks 1-2 after hemisection, the ipsilesional right hindlimb contacted obstacles in ∼50% of trials, triggering a stumbling corrective reaction or absent responses, which we termed Other. When complete clearance occurred, we observed exaggerated ipsilesional hindlimb flexion when crossing the obstacle with contralesional Left limbs leading. At weeks 7-8 after hemisection, the proportion of complete clearance increased, Other responses decreased, and stumbling corrective reactions remained relatively unchanged. We found redistribution of weight support after hemisection, with reduced diagonal supports and increased homolateral supports, particularly on the left contralesional side. The main neural strategy for complete clearance in intact cats consisted of increased knee flexor activation. After hemisection, ipsilesional knee flexor activation remained, but it was insufficient or more variable as the limb approached the obstacle. Intact cats also increased their speed when stepping over an obstacle, an increase that disappeared after hemisection. The increase in complete clearance over time after hemisection paralleled the recovery of muscle activation patterns or new strategies. Our results suggest partial recovery of anticipatory control through neuroplastic changes in the locomotor control system.SIGNIFICANCE STATEMENT Most spinal cord injuries (SCIs) are incomplete and people can recover some walking functions. However, the main challenge for people with SCIs that do recover a high level of function is to produce a gait that can adjust to everyday occurrences, such as turning, stepping over an obstacle, etc. Here, we use the cat model to answer two basic questions: How does an animal negotiate an obstacle after an incomplete SCI and why does it fail to safely clear it? We show that the inability to clear an obstacle is because of improper activation of muscles that flex the knee. Animals recover a certain amount of function thanks to new strategies and changes within the nervous system.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Masculino , Animales , Femenino , Médula Espinal/fisiología , Negociación , Locomoción/fisiología , Caminata , Electromiografía , Miembro Posterior
2.
Chemistry ; 29(13): e202203717, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469732

RESUMEN

Three C3 symmetric macrolactams were very efficiently cyclized from their linear precursors. Adequately located substituents are responsible for the enhancement of reactivity that is not observed in the unsubstituted parent. DFT calculations show that the properly folded cyclization precursor, the reactive conformer, is more populated than other conformers, leading to a decrease of free energy of activation. The crystal structure of the ring substituted with three very bulky esters indicates that tubular stacking is preserved.

3.
Proc Natl Acad Sci U S A ; 117(23): 13105-13116, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457152

RESUMEN

With over 30% of current medications targeting this family of proteins, G-protein-coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.


Asunto(s)
Encéfalo/metabolismo , Mapas de Interacción de Proteínas/fisiología , Receptores Opioides delta/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Femenino , Técnicas de Sustitución del Gen , Genes Reporteros/genética , Masculino , Ratones , Ratones Transgénicos , Pliegue de Proteína , Mapeo de Interacción de Proteínas/métodos , Proteómica , Receptores Opioides delta/genética , Transducción de Señal/fisiología , Espectrometría de Masas en Tándem
4.
J Neurophysiol ; 128(6): 1593-1616, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382895

RESUMEN

Most previous studies investigated the recovery of locomotion in animals and people with incomplete spinal cord injury (SCI) during relatively simple tasks (e.g., walking in a straight line on a horizontal surface or a treadmill). We know less about the recovery of locomotion after incomplete SCI in left-right asymmetric conditions, such as turning or stepping along circular trajectories. To investigate this, we collected kinematic and electromyography data during split-belt locomotion at different left-right speed differences before and after a right thoracic lateral spinal cord hemisection in nine adult cats. After hemisection, although cats still performed split-belt locomotion, we observed several changes in the gait pattern compared with the intact state at early (1-2 wk) and late (7-8 wk) time points. Cats with larger lesions showed new coordination patterns between the fore- and hindlimbs, with the forelimbs taking more steps. Despite this change in fore-hind coordination, cats maintained consistent phasing between the fore- and hindlimbs. Adjustments in cycle and phase (stance and swing) durations between the slow and fast sides allowed animals to maintain 1:1 left-right coordination. Periods of triple support involving the right (ipsilesional) hindlimb decreased in favor of quad support and triple support involving the other limbs. Step and stride lengths decreased with concurrent changes in the right fore- and hindlimbs, possibly to avoid interference. The above adjustments in the gait pattern allowed cats to retain the ability to locomote in asymmetric conditions after incomplete SCI. We discuss potential plastic neuromechanical mechanisms involved in locomotor recovery in these conditions.NEW & NOTEWORTHY Everyday locomotion often involves left-right asymmetries, when turning, walking along circular paths, stepping on uneven terrains, etc. To show how incomplete spinal cord injury affects locomotor control in asymmetric conditions, we collected data before and after a thoracic lateral spinal hemisection on a split-belt treadmill with one side stepping faster than the other. We show that adjustments in kinematics and muscle activity allowed cats to retain the ability to perform asymmetric locomotion after hemisection.


Asunto(s)
Locomoción , Traumatismos de la Médula Espinal , Animales , Locomoción/fisiología , Marcha/fisiología , Médula Espinal/fisiología , Miembro Posterior/fisiología , Electromiografía
5.
Eur J Neurosci ; 56(3): 4031-4044, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674691

RESUMEN

Primary afferents are responsible for transmitting signals produced by noxious stimuli from the periphery to the spinal cord. Mu and delta opioid receptors (MOP and DOP) have analgesic properties and are highly expressed in dorsal root ganglia (DRG) neurons. In humans, spinal DOP is almost exclusively located on central terminals of DRG neurons, whereas in rodents, it is expressed both on presynaptic terminals and spinal neurons. In this study, we aimed to assess the distribution of MOP and DOP in the DRGs of mice and rats. Using in situ hybridization and immunofluorescence, we visualized MOP and DOP mRNA together with various neuronal markers. In rats and mice, we show that both receptors are expressed, albeit to different extents, in all types of neurons, namely, large and medium myelinated neurons (NF200-positive), small nonpeptidergic (IB4- or P2X3R-positive) and peptidergic C fibres (Tac1-positive). Overall, DOP mRNA was found to be mainly expressed in large and medium myelinated neurons, whereas MOP mRNA was mainly found in C fibres. The distribution of MOP and DOP, however, slightly differs between rats and mice, with a higher proportion of small nonpeptidergic C fibres expressing DOP mRNA in mice than in rats. We further found that neither morphine nor inflammation affected the distribution of the receptor mRNA. Because of their location, our results confirm that MOP and DOP have the potential to alleviate similar types of pain and that this effect could slightly differ between species.


Asunto(s)
Ganglios Espinales , Neuronas , ARN Mensajero , Receptores Opioides delta , Receptores Opioides mu , Animales , Ganglios Espinales/metabolismo , Ratones , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
6.
J Neurosci Res ; 100(1): 99-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34559903

RESUMEN

Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied µ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.


Asunto(s)
Dolor Crónico , Receptores Opioides , Analgésicos/uso terapéutico , Analgésicos Opioides , Animales , Dolor Crónico/tratamiento farmacológico , Péptidos Opioides/fisiología , Receptores Opioides/fisiología , Receptores Opioides mu
7.
PLoS Biol ; 17(9): e3000451, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525189

RESUMEN

Nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) is a mitochondria-located innate immune sensor that inhibits major pro-inflammatory pathways such as type I interferon and nuclear factor-κB signaling. We generated a novel, spontaneous, and rapidly progressing mouse model of multiple sclerosis (MS) by crossing myelin-specific T-cell receptor (TCR) transgenic mice with Nlrx1-/- mice. About half of the resulting progeny developed spontaneous experimental autoimmune encephalomyelitis (spEAE), which was associated with severe demyelination and inflammation in the central nervous system (CNS). Using lymphocyte-deficient mice and a series of adoptive transfer experiments, we demonstrate that genetic susceptibility to EAE lies within the innate immune compartment. We show that NLRX1 inhibits the subclinical stages of microglial activation and prevents the generation of neurotoxic astrocytes that induce neuronal and oligodendrocyte death in vitro. Moreover, we discovered several mutations within NLRX1 that run in MS-affected families. In summary, our findings highlight the importance of NLRX1 in controlling the early stages of CNS inflammation and preventing the onset of spontaneous autoimmunity.


Asunto(s)
Encefalomielitis Autoinmune Experimental/etiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Adulto , Animales , Astrocitos/fisiología , Estudios de Casos y Controles , Sistema Nervioso Central/patología , Codón sin Sentido , Enfermedades Desmielinizantes , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inmunidad Innata , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Mutación Missense , Adulto Joven
8.
Nucleic Acids Res ; 48(20): 11675-11694, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33137177

RESUMEN

RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Factores de Intercambio de Guanina Nucleótido/genética , Homeostasis , Mutación , Proteínas Nucleares/genética , Poliadenilación , Precursores del ARN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma
9.
J Pharmacol Exp Ther ; 374(1): 52-61, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32327529

RESUMEN

The analgesic potency of morphine-6-glucuronide (M6G) has been shown to be 50-fold higher than morphine after intracerebral injection. However, the brain penetration of M6G is significantly lower than morphine, thus limiting its usefulness in pain management. Here, we created new entities by the conjugation of the angiopep-2 peptide (An2) that crosses the blood-brain barrier (BBB) by low-density lipoprotein receptor-related protein 1 receptor-mediated transcytosis with either morphine or M6G. We demonstrated improvement of BBB permeability of these new entities compared with that of unconjugated M6G and morphine. Intravenous or subcutaneous administration of the An2-M6G conjugate exerted greater and more sustained analgesic activity than equivalent doses of either morphine or M6G. Likewise, subcutaneous An2-morphine induced a delayed but prolonged antinociceptive effect. The effects of these conjugates on the gastrointestinal tract motility were also evaluated. An2-morphine significantly reduced the intestinal transit time, whereas An2-M6G exhibited a reduced constipation profile, as compared with an equimolar dose of morphine. In summary, we have developed new brain-penetrant opioid conjugates exhibiting improved analgesia to side effect ratios. These results thus support the use of An2-carrier peptides as an innovative BBB-targeting technology to deliver effective drugs, such as M6G, for pain management. SIGNIFICANCE STATEMENT: The metabolite morphine-6-glucuronide (M6G) does not efficiently cross the blood-brain barrier. The low-density lipoprotein receptor-related protein 1 peptide ligand angiopep-2 may serve as an effective drug delivery system to the brain. Here, we demonstrated that the coupling of M6G to angiopep-2 peptide (An2) improves its brain penetration and significantly increases its analgesic potency. The An2-M6G conjugate has a favorable side effect profile that includes reduction of developing constipation. An2-M6G exhibits a unique pharmacodynamic profile with a better therapeutic window than morphine.


Asunto(s)
Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Barrera Hematoencefálica/metabolismo , Derivados de la Morfina/química , Derivados de la Morfina/metabolismo , Péptidos/química , Administración Intravenosa , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Transporte Biológico , Motilidad Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Derivados de la Morfina/administración & dosificación , Derivados de la Morfina/farmacología , Nocicepción/efectos de los fármacos
10.
J Neural Transm (Vienna) ; 127(4): 661-672, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32189076

RESUMEN

The use of opioids for the relief of pain and headache disorders has been studied for years. Nowadays, particularly because of its ability to produce analgesia in various pain models, delta opioid receptor (DOPr) emerges as a promising target for the development of new pain therapies. Indeed, their potential to avoid the unwanted effects commonly observed with clinically used opioids acting at the mu opioid receptor (MOPr) suggests that DOPr agonists could be a therapeutic option. In this review, we discuss the use of opioids in the management of pain in addition to describing the evidence of the analgesic potency of DOPr agonists in animal models.


Asunto(s)
Dolor Agudo , Analgésicos Opioides/farmacología , Dolor en Cáncer , Dolor Crónico , Trastornos Migrañosos , Neuralgia , Receptores Opioides delta , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/metabolismo , Animales , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo
11.
J Pharmacol Exp Ther ; 370(3): 437-446, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31248979

RESUMEN

Multiple sclerosis is a neurodegenerative disease affecting predominantly female patients between 20 and 45 years of age. We previously reported the significant contribution of mouse mast cell protease 4 (mMCP-4) in the synthesis of endothelin-1 (ET-1) in healthy mice and in a murine model of experimental autoimmune encephalomyelitis (EAE). In the current study, the cardiovascular effects of ET-1 and big endothelin-1 (big-ET-1) administered systemically or intrathecally were assessed in the early preclinical phase of EAE in telemetry instrumented/conscious mice. Chymase-specific enzymatic activity was also measured in the lung, brain, and mast cell extracts in vitro. Finally, the impact of EAE immunization was studied on the pulmonary and brain mRNA expression of different genes of the endothelin pathway, interleukin-33 (IL-33), and monitoring of immunoreactive tumor necrosis factor-α (TNF-α). Systemically or intrathecally administered big-ET-1 triggered increases in blood pressure in conscious mice. One week post-EAE, the pressor responses to big-ET-1 were potentiated in wild-type (WT) mice but not in mMCP-4 knockout (KO) mice. EAE triggered mMCP-4-specific activity in cerebral homogenates and peritoneal mast cells. Enhanced pulmonary, but not cerebral preproendothelin-1 and IL-33 mRNA were found in KO mice and further increased 1 week post-EAE immunization, but not in WT animals. Finally, TNF-α levels were also increased in serum from mMCP-4 KO mice, but not WT, 1 week post-EAE. Our study suggests that mMCP-4 activity is enhanced both centrally and systemically in a mouse model of EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Endotelina-1/administración & dosificación , Endotelina-1/farmacología , Serina Endopeptidasas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Técnicas de Inactivación de Genes , Hemodinámica/efectos de los fármacos , Inyecciones Espinales , Interleucina-33/deficiencia , Interleucina-33/genética , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Regulación hacia Arriba/efectos de los fármacos
12.
Cell Mol Life Sci ; 75(12): 2257-2271, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29288293

RESUMEN

Soon after internalization delta opioid receptors (DOPrs) are committed to the degradation path by G protein-coupled receptor (GPCR)-associated binding protein. Here we provide evidence that this classical post-endocytic itinerary may be rectified by downstream sorting decisions which allow DOPrs to regain to the membrane after having reached late endosomes (LE). The LE sorting mechanism involved ESCRT accessory protein Alix and the TIP47/Rab9 retrieval complex which supported translocation of the receptor to the TGN, from where it subsequently regained the cell membrane. Preventing DOPrs from completing this itinerary precipitated acute analgesic tolerance to the agonist DPDPE, supporting the relevance of this recycling path in maintaining the analgesic response by this receptor. Taken together, these findings reveal a post-endocytic itinerary where GPCRs that have been sorted for degradation can still recycle to the membrane.


Asunto(s)
Membrana Celular/metabolismo , Receptores Opioides delta/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Neuronas/metabolismo , Transporte de Proteínas , Proteolisis , Ratas , Ratas Sprague-Dawley
13.
Pharmacol Rev ; 68(3): 631-700, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27343248

RESUMEN

Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides delta/antagonistas & inhibidores , Animales , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Terapia Molecular Dirigida/métodos , Dimensión del Dolor , Receptores Opioides delta/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Bioorg Med Chem Lett ; 28(13): 2320-2323, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29853330

RESUMEN

In this study, affinities and activities of derivatized analogues of Dmt-dermorphin[1-4] (i.e. Dmt-d-Ala-Phe-GlyNH2, Dmt = 2',6'-dimethyl-(S)-tyrosine) for the µ opioid receptor (MOP) and δ opioid receptor (DOP) were evaluated using radioligand binding studies, functional cell-based assays and isolated organ bath experiments. By means of solid-phase or solution-phase Suzuki-Miyaura cross-couplings, various substituted regioisomers of the phenylalanine moiety in position 3 of the sequence were prepared. An 18-membered library of opioid tetrapeptides was generated via screening of the chemical space around the Phe3 side chain. These substitutions modulated bioactivity, receptor subtype selectivity and highly effective ligands with subnanomolar binding affinities, contributed to higher functional activities and potent analgesic actions. In search of selective peptidic ligands, we show here that the Suzuki-Miyaura reaction is a versatile and robust tool which could also be deployed elsewhere.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Oligopéptidos/uso terapéutico , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Analgésicos Opioides/síntesis química , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Animales , Cobayas , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Estructura Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Oligopéptidos/farmacología , Ratas Sprague-Dawley
15.
Cochrane Database Syst Rev ; 10: CD012290, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30306545

RESUMEN

BACKGROUND: Active mind-body movement therapies (AMBMTs), including but not limited to yoga, tai chi, and qigong, have been applied as exercise modalities for people with chronic obstructive pulmonary disease (COPD). AMBMT strategies have been found to be more effective than usual care; however, whether AMBMT is inferior, equivalent, or superior to pulmonary rehabilitation (PR) in people with COPD remains to be determined. OBJECTIVES: To assess the effects of AMBMTs compared with, or in addition to, PR in the management of COPD. SEARCH METHODS: We searched the Cochrane Airways Group Specialised Register of trials and major Chinese databases, as well as trial registries from inception to July 2017. In addition, we searched references of primary studies and review articles. We updated this search in July 2018 but have not yet incorporated these results. SELECTION CRITERIA: We included (1) randomised controlled trials (RCTs) comparing AMBMT (i.e. controlled breathing and/or focused meditation/attention interventions for which patients must actively move their joints and muscles for at least four weeks with no minimum intervention frequency) versus PR (any inpatient or outpatient, community-based or home-based rehabilitation programme lasting at least four weeks, with no minimum intervention frequency, that included conventional exercise training with or without education or psychological support) and (2) RCTs comparing AMBMT + PR versus PR alone in people with COPD. Two independent review authors screened and selected studies for inclusion. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, extracted outcome data, and assessed risk of bias. We contacted study authors if necessary to ask them to provide missing data. We calculated mean differences (MDs) using a random-effects model. MAIN RESULTS: We included in the meta-analysis 10 studies with 762 participants across one or more comparisons. The sample size of included studies ranged from 11 to 206 participants. Nine out of 10 studies involving all levels of COPD severity were conducted in China with adults from 55 to 88 years of age, a higher proportion of whom were male (78%). Nine out of 10 studies provided tai chi and/or qigong programmes as AMBMT, and one study provided yoga. Overall, the term 'PR' has been uncritically applied in the vast majority of studies, which limits comparison of AMBMT and PR. For example, eight out of 10 studies considered walking training as equal to PR and used this as conventional exercise training within PR. Overall study quality for main comparisons was moderate to very low mainly owing to imprecision, indirectness (exercise component inconsistent with recommendations), and risk of bias issues. The primary outcomes for our review were quality of life, dyspnoea, and serious adverse events.When researchers compared AMBMT versus PR alone (mainly unstructured walking training), statistically significant improvements in disease-specific quality of life (QoL) (St. George's Respiratory Questionnaire (SGRQ) total score) favoured AMBMT: mean difference (MD) -5.83, 95% confidence interval (CI) -8.75 to -2.92; three trials; 249 participants; low-quality evidence. The common effect size, but not the 95% CI around the pooled treatment effect, exceeded the minimal clinically important difference (MCID) of minus four. The COPD Assessment Test (CAT) also revealed statistically significant improvements favouring AMBMT over PR, with scores exceeding the MCID of three, with an MD of 6.58 units (95% CI -9.16 to - 4.00 units; one trial; 74 participants; low-quality evidence). Results show no between-group differences with regard to dyspnoea measured by the modified Medical Research Council Scale (MD 0.00 units, 95% CI -0.37 to 0.37; two trials; 127 participants; low-quality evidence), the Borg Scale (MD 0.44 units, 95% CI -0.88 to 0.00; one trial; 139 participants; low-quality evidence), or the Chronic Respiratory Questionnaire (CRQ) Dyspnoea Scale (MD -0.21, 95% CI -2.81 to 2.38; one trial; 11 participants; low-quality evidence). Comparisons of AMBMT versus PR alone did not include assessments of generic quality of life, adverse events, limb muscle function, exacerbations, or adherence.Comparisons of AMBMT added to PR versus PR alone (mainly unstructured walking training) revealed significant improvements in generic QoL as measured by Short Form (SF)-36 for both the SF-36 general health summary score (MD 5.42, 95% CI 3.82 to 7.02; one trial; 80 participants; very low-quality evidence) and the SF-36 mental health summary score (MD 3.29, 95% CI 1.45 to 4.95; one trial; 80 participants; very low-quality evidence). With regard to disease-specific QoL, investigators noted no significant improvement with addition of AMBMT to PR versus PR alone (SGRQ total score: MD -2.57, 95% CI -7.76 to 2.62 units; one trial; 192 participants; moderate-quality evidence; CRQ Dyspnoea Scale score: MD 0.04, 95% CI -2.18 to 2.26 units; one trial; 80 participants; very low-quality evidence). Comparisons of AMBMT + PR versus PR alone did not include assessments of dyspnoea, adverse events, limb muscle function, exacerbations, or adherence. AUTHORS' CONCLUSIONS: Given the quality of available evidence, the effects of AMBMT versus PR or of AMBMT added to PR versus PR alone in people with stable COPD remain inconclusive. Evidence of low quality suggests better disease-specific QoL with AMBMT versus PR in people with stable COPD, and evidence of very low quality suggests no differences in dyspnoea between AMBMT and PR. Evidence of moderate quality shows that AMBMT added to PR does not result in improved disease-specific QoL, and evidence of very low quality suggests that AMBMT added to PR may lead to better generic QoL versus PR alone. Future studies with adequate descriptions of conventional exercise training (i.e. information on duration, intensity, and progression) delivered by trained professionals with a comprehensive understanding of respiratory physiology, exercise science, and the pathology of COPD are needed before definitive conclusions can be drawn regarding treatment outcomes with AMBMT versus PR or AMBMT added to PR versus PR alone for patients with COPD.


Asunto(s)
Terapias Mente-Cuerpo/métodos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Anciano , Anciano de 80 o más Años , Atención , Ejercicios Respiratorios/métodos , Disnea/rehabilitación , Disnea/terapia , Femenino , Humanos , Masculino , Meditación/métodos , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/rehabilitación , Calidad de Vida , Caminata
16.
Handb Exp Pharmacol ; 247: 147-177, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28510066

RESUMEN

Nowadays, the delta opioid receptor (DOPr) represents a promising target for the treatment of chronic pain and emotional disorders. Despite the fact that they produce limited antinociceptive effects in healthy animals and in most acute pain models, DOPr agonists have shown efficacy in various chronic pain models. In this chapter, we review the progresses that have been made over the last decades in understanding the role played by DOPr in the control of pain. More specifically, the distribution of DOPr within the central nervous system and along pain pathways is presented. We also summarize the literature supporting a role for DOPr in acute, tonic, and chronic pain models, as well as the mechanisms regulating its activity under specific conditions. Finally, novel compounds that have make their way to clinical trials are discussed.


Asunto(s)
Manejo del Dolor , Dolor/fisiopatología , Receptores Opioides delta/fisiología , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/fisiopatología , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/fisiopatología , Humanos , Receptores Opioides delta/química , Receptores Opioides delta/efectos de los fármacos , Receptores Opioides delta/genética
17.
Mol Cell Neurosci ; 79: 53-63, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28041939

RESUMEN

The delta opioid receptor (DOPr) is known to be mainly expressed in intracellular compartments. It remains unknown why DOPr is barely exported to the cell surface, but it seems that a substantial proportion of the immature receptor is trapped within the endoplasmic reticulum (ER) and the Golgi network. In the present study, we performed LC-MS/MS analysis to identify putative protein partners involved in the retention of DOPr. Analysis of the proteins co-immunoprecipitating with Flag-DOPr in transfected HEK293 cells revealed the presence of numerous subunits of the coatomer protein complex I (COPI), a vesicle-coating complex involved in recycling resident proteins from the Golgi back to the ER. Further analysis of the amino acid sequence of DOPr identified multiple consensus di-lysine and di-arginine motifs within the intracellular segments of DOPr. Using cell-surface ELISA and GST pulldown assays, we showed that DOPr interacts with COPI through its intracellular loops 2 and 3 (ICL2 and ICL3, respectively) and that the mutation of the K164AK166 (ICL2) or K250EK252 (ICL3) putative COPI binding sites increased the cell-surface expression of DOPr in transfected cells. Altogether, our results indicate that COPI is a binding partner of DOPr and provide a putative mechanism to explain why DOPr is highly retained inside the cells.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Señales de Clasificación de Proteína , Receptores Opioides delta/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Unión Proteica , Transporte de Proteínas , Receptores Opioides delta/química
18.
Neural Plast ; 2017: 1546125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28781901

RESUMEN

Psychological stress is a state of mental or emotional strain or tension that results from adverse or demanding circumstances. Chronic stress is well known to induce anxiety disorders and major depression; it is also considered a risk factor for Alzheimer's disease. Stress resilience is a positive outcome that is associated with preserved cognition and healthy aging. Resilience presents psychological and biological characteristics intrinsic to an individual conferring protection against the development of psychopathologies in the face of adversity. How can we promote or improve resilience to chronic stress? Numerous studies have proposed mechanisms that could trigger this desirable process. The roles of enkephalin transmission in the control of pain, physiological functions, like respiration, and affective disorders have been studied for more than 30 years. However, their role in the resilience to chronic stress has received much less attention. This review presents the evidence for an emerging involvement of enkephalin signaling through its two associated opioid receptors, µ opioid peptide receptor and δ opioid peptide receptor, in the natural adaptation to stressful lifestyles.


Asunto(s)
Encéfalo/metabolismo , Encefalinas/metabolismo , Resiliencia Psicológica , Estrés Psicológico/metabolismo , Animales , Emociones , Humanos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal
19.
Pharmacol Res ; 104: 176-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26707030

RESUMEN

Advanced glycation end-products (AGE) and the receptor for AGE (RAGE) have been linked to numerous diabetic vascular complications. RAGE activation promotes a self-sustaining state of chronic inflammation and has been shown to induce apoptosis in various cell types. Although previous studies in vascular smooth muscle cells (VSMC) showed that RAGE activation increases vascular calcification and interferes with their contractile phenotype, little is known on the potential of RAGE to induce apoptosis in VSMC. Using a combination of apoptotic assays, we showed that RAGE stimulation with its ligand CML-HSA promotes apoptosis of VSMC. The formation of stress granules and the increase in the level of the associated protein HuR point toward RAGE-dependent endoplasmic reticulum (ER) stress, which is proposed as a key contributor of RAGE-induced apoptosis in VSMC as it has been shown to promote cell death via numerous mechanisms, including up-regulation of caspase-9. Chronic NF-κB activation and modulation of Bcl-2 homologs are also suspected to contribute to RAGE-dependent apoptosis in VSMC. With the goal of reducing RAGE signaling and its detrimental impact on VSMC, we designed a RAGE antagonist (iRAGE) derived from the primary amino acid sequence of HSA. The resulting CML peptide was selected for the high glycation frequency of the primary sequence in the native protein in vivo. Pretreatment with iRAGE blocked 69.6% of the increase in NF-κB signaling caused by RAGE activation with CML-HSA after 48h. Preincubation with iRAGE was successful in reducing RAGE-induced apoptosis, as seen through enhanced cell survival by SPR and reduced PARP cleavage. Activation of executioner caspases was 63.5% lower in cells treated with iRAGE before stimulation with CML-HSA. To our knowledge, iRAGE is the first antagonist shown to block AGE-RAGE interaction and we propose the molecule as an initial candidate for drug discovery.


Asunto(s)
Lisina/análogos & derivados , Péptidos/farmacología , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Albúmina Sérica/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Lisina/química , Lisina/farmacología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Albúmina Sérica/química
20.
J Neurosci ; 33(28): 11703-14, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23843537

RESUMEN

The expression and contribution of µ (MOPR) and δ opioid receptors (DOPR) in polymodal nociceptors have been recently challenged. Indeed, MOPR and DOPR were shown to be expressed in distinct subpopulation of nociceptors where they inhibit pain induced by noxious heat and mechanical stimuli, respectively. In the present study, we used electrophysiological measurements to assess the effect of spinal MOPR and DOPR activation on heat-induced and mechanically induced diffuse noxious inhibitory controls (DNICs). We recorded from wide dynamic range neurons in the spinal trigeminal nucleus of anesthetized rats. Trains of 105 electrical shocks were delivered to the excitatory cutaneous receptive field. DNICs were triggered either by immersion of the hindpaw in 49°C water or application of 300 g of mechanical pressure. To study the involvement of peptidergic primary afferents in the activation of DNIC by noxious heat and mechanical stimulations, substance P release was measured in the spinal cord by visualizing neurokinin type 1 receptor internalization. We found that the activation of spinal MOPR and DOPR similarly attenuates the DNIC and neurokinin type 1 receptor internalization induced either by heat or mechanical stimuli. Our results therefore reveal that the activation of spinal MOPR and DOPR relieves both heat-induced and mechanically induced pain with similar potency and suggest that these receptors are expressed on polymodal, substance P-expressing neurons.


Asunto(s)
Calor , Inhibición Neural/fisiología , Dolor/metabolismo , Dolor/prevención & control , Receptores Opioides delta/fisiología , Receptores Opioides mu/fisiología , Médula Espinal/metabolismo , Animales , Estimulación Eléctrica/efectos adversos , Calor/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Física/efectos adversos , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA