RESUMEN
Artificial intelligence (AI) is defined as the ability of machines to perform tasks that are usually associated with intelligent beings. Argument and debate are fundamental capabilities of human intelligence, essential for a wide range of human activities, and common to all human societies. The development of computational argumentation technologies is therefore an important emerging discipline in AI research1. Here we present Project Debater, an autonomous debating system that can engage in a competitive debate with humans. We provide a complete description of the system's architecture, a thorough and systematic evaluation of its operation across a wide range of debate topics, and a detailed account of the system's performance in its public debut against three expert human debaters. We also highlight the fundamental differences between debating with humans as opposed to challenging humans in game competitions, the latter being the focus of classical 'grand challenges' pursued by the AI research community over the past few decades. We suggest that such challenges lie in the 'comfort zone' of AI, whereas debating with humans lies in a different territory, in which humans still prevail, and for which novel paradigms are required to make substantial progress.
Asunto(s)
Inteligencia Artificial , Conducta Competitiva , Disentimientos y Disputas , Actividades Humanas , Inteligencia Artificial/normas , Humanos , Procesamiento de Lenguaje NaturalRESUMEN
Sleep is ubiquitous in vertebrates and invertebrates, and its loss is typically associated with reduced performance, health, or survival, for reasons that are yet unclear [1-3]. Nevertheless, some animals can reduce sleep for increasing foraging time [4], under predation risk [5-8], during seasonal migration [9-11], or for having greater mating opportunities [12, 13]. Here, we tested the hypothesis that social bumble bee (Bombus terrestris) workers give up sleep for improving brood care. We combined video recordings, detailed behavioral analyses, sleep-deprivation experiments, and response-threshold assessments to characterize the sleep behavior of worker bees and showed that immobility bouts of ≥5 min provide a reliable proxy for sleep. We next used this index to study sleep with an automated video-based activity monitoring system. We found that isolated workers severely reduce sleep time in the presence of both larvae that need to be fed and pupae that do not. Reduced sleep was also correlated with around-the-clock activity and wax-pot building, which are typical for nest-founding mother queens. Cocoons, from which we removed the pupae, elicited a similar but transient sleep loss in tending workers, suggesting that the pupa effect on sleep is mediated by pheromonal signals. Sleep time increased following brood removal but remained lower compared to control bees, suggesting that the brood modulated sleep need. This first evidence for brood modulation of sleep in an insect suggests that plasticity in sleep can evolve as a mechanism to improve care for dependent juveniles, even in social insect workers that do not care for their own offspring.