RESUMEN
The reverse bias stability is a key concern for the commercialization and reliability of halide perovskite photovoltaics. Here, the robustness of perovskite-silicon tandem solar cells to reverse bias electrical degradation down to -40 V is investigated. The two-terminal tandem configuration, with the perovskite coupled to silicon, can improve the solar cell resistance to severe negative voltages when the tandem device is properly designed. While perovskite cells typically exhibit early reverse bias breakdown voltages, the serial connection with silicon cells with large shunt resistances and high voltage breakdown limits their negative polarization and prevent the passage of large current densities when reverse biased. The importance of careful optical design is illustrated, with bottom-limited conditions required to prevent the perovskite top cell from exploring its own breakdown. This aspect is of great importance in the case of partial shading events when the solar spectrum is richer in the IR components than the standard AM1.5G. Notably, 100% of efficiency retained after polarization at -40 V in different stressing conditions is observed. The results presented suggest that standard industrial bypass diode schemes may be compatible with silicon/perovskite tandem photovoltaics and provide new guidelines for the standardization of the stressing protocols.
RESUMEN
Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and it must have a good performance and durability. In this work, accurate characterizations of performance and durability, in terms of photo- and thermo-oxidation resistance, of encapsulants based on PolyEthylene Vinyl Acetate (EVA) and PolyOlefin Elastomer (POE), containing appropriate additives, before (pre-) and after (post-) lamination process have been carried out. To simulate industrial lamination processing conditions, both EVApre-lam and POEpre-lam sheets have been subjected to prolonged thermal treatment upon high pressure. To carry out an accurate characterization, differential scanning calorimetry, rheological and mechanical analysis, FTIR and UV-visible spectroscopy analyses have been performed on pre- and post-laminated EVA and POE. The durability, in terms of photo- and thermo-oxidation resistance, of pre-laminated and post-laminated EVA and POE sheets has been evaluated upon UVB exposure and prolonged thermal treatment, and the progress of degradation has been monitored by spectroscopy analysis. All obtained results agree that the lamination process has a beneficial effect on 3D-structuration of both EVA and POE sheets, and after lamination, the POE shows enhanced rigidity and appropriate ductility. Finally, although both EVA and POE can be considered good candidates as encapsulants for bifacial PV modules, it seems that the POE sheets show a better resistance to oxidation than the EVA sheets.
RESUMEN
Hydrogenated amorphous Si (a-Si:H) solar cells are strongly affected by the well known Staebler-Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a-Si:H and to the stability and motion of H-related species in the a-Si:H lattice. This work has been designed in support of the research article entitled "Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells" in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results.