Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Microbiol Immunol ; 201(4): 527-39, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22972232

RESUMEN

Reactivation of latent cytomegalovirus (CMV) in the transient state of immunodeficiency after hematopoietic cell transplantation (HCT) is the most frequent and severe viral complication endangering leukemia therapy success. By infecting the bone marrow (BM) stroma of the transplantation recipient, CMV can directly interfere with BM repopulation by the transplanted donor-derived hematopoietic cells and thus delay immune reconstitution of the recipient. Cytopathogenic virus spread in tissues can result in CMV disease with multiple organ manifestations of which interstitial pneumonia is the most feared. There exists a 'window of risk' between hematoablative treatment and reconstitution of antiviral immunity after HCT, whereby timely reconstitution of antiviral CD8 T cells is a recognized positive prognostic parameter for the control of reactivated CMV infection and prevention of CMV disease. Supplementation of endogenous reconstitution by adoptive cell transfer of 'ready-to-go' effector and/or memory virus epitope-specific CD8 T cells is a therapeutic option to bridge the 'window of risk.' Preclinical research in murine models of CMV disease has been pivotal by providing 'proof of concept' for a benefit from CD8 T-cell therapy of HCT-associated CMV disease (reviewed in Holtappels et al. Med Microbiol Immunol 197:125-134, 2008). Here, we give an update of our previous review with focus on parameters that determine the efficacy of adoptive immunotherapy of CMV infection by antiviral CD8 T cells in the murine model.


Asunto(s)
Traslado Adoptivo , Infecciones por Citomegalovirus/terapia , Animales , Modelos Animales de Enfermedad , Huésped Inmunocomprometido , Ratones , Resultado del Tratamiento
2.
Front Immunol ; 12: 694588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489940

RESUMEN

Reactivation of latent cytomegalovirus (CMV) endangers the therapeutic success of hematopoietic cell transplantation (HCT) in tumor patients due to cytopathogenic virus spread that leads to organ manifestations of CMV disease, to interstitial pneumonia in particular. In cases of virus variants that are refractory to standard antiviral pharmacotherapy, immunotherapy by adoptive cell transfer (ACT) of virus-specific CD8+ T cells is the last resort to bridge the "protection gap" between hematoablative conditioning for HCT and endogenous reconstitution of antiviral immunity. We have used the well-established mouse model of CD8+ T-cell immunotherapy by ACT in a setting of experimental HCT and murine CMV (mCMV) infection to pursue the concept of improving the efficacy of ACT by therapeutic vaccination (TherVac) post-HCT. TherVac aims at restimulation and expansion of limited numbers of transferred antiviral CD8+ T cells within the recipient. Syngeneic HCT was performed with C57BL/6 mice as donors and recipients. Recipients were infected with recombinant mCMV (mCMV-SIINFEKL) that expresses antigenic peptide SIINFEKL presented to CD8+ T cells by the MHC class-I molecule Kb. ACT was performed with transgenic OT-I CD8+ T cells expressing a T-cell receptor specific for SIINFEKL-Kb. Recombinant human CMV dense bodies (DB-SIINFEKL), engineered to contain SIINFEKL within tegument protein pUL83/pp65, served for vaccination. DBs were chosen as they represent non-infectious, enveloped, and thus fusion-competent subviral particles capable of activating dendritic cells and delivering antigens directly into the cytosol for processing and presentation in the MHC class-I pathway. One set of our experiments documents the power of vaccination with DBs in protecting the immunocompetent host against a challenge infection. A further set of experiments revealed a significant improvement of antiviral control in HCT recipients by combining ACT with TherVac. In both settings, the benefit from vaccination with DBs proved to be strictly epitope-specific. The capacity to protect was lost when DBs included the peptide sequence SIINFEKA lacking immunogenicity and antigenicity due to C-terminal residue point mutation L8A, which prevents efficient proteasomal peptide processing and binding to Kb. Our preclinical research data thus provide an argument for using pre-emptive TherVac to enhance antiviral protection by ACT in HCT recipients with diagnosed CMV reactivation.


Asunto(s)
Traslado Adoptivo , Linfocitos T CD8-positivos/trasplante , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/administración & dosificación , Citomegalovirus/patogenicidad , Trasplante de Células Madre Hematopoyéticas , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Proliferación Celular , Células Cultivadas , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Vacunas contra Citomegalovirus/inmunología , Modelos Animales de Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Interacciones Huésped-Patógeno , Huésped Inmunocomprometido , Activación de Linfocitos , Ratones Endogámicos C57BL , Vacunación , Activación Viral
3.
Artículo en Inglés | MEDLINE | ID: mdl-32582572

RESUMEN

Hematoablative treatment followed by hematopoietic cell transplantation (HCT) for reconstituting the co-ablated immune system is a therapeutic option to cure aggressive forms of hematopoietic malignancies. In cases of family donors or unrelated donors, immunogenetic mismatches in major histocompatibility complex (MHC) and/or minor histocompatibility (minor-H) loci are unavoidable and bear a risk of graft-vs.-host reaction and disease (GvHR/D). Transient immunodeficiency inherent to the HCT protocol favors a productive reactivation of latent cytomegalovirus (CMV) that can result in multiple-organ CMV disease. In addition, there exists evidence from a mouse model of MHC class-I-mismatched GvH-HCT to propose that mismatches interfere with an efficient reconstitution of antiviral immunity. Here we used a mouse model of MHC-matched HCT with C57BL/6 donors and MHC-congenic BALB.B recipients that only differ in polymorphic autosomal background genes, including minor-H loci coding for minor-H antigens (minor-HAg). Minor-HAg mismatch is found to promote lethal CMV disease in absence of a detectable GvH response to an immunodominant minor-HAg, the H60 locus-encoded antigenic peptide LYL8. Lethality of infection correlates with inefficient reconstitution of viral epitope-specific CD8+ T cells. Notably, lethality is prevented and control of cytopathogenic infection is restored when viral antigen presentation is enhanced by deletion of immune evasion genes from the infecting virus. We hypothesize that any kind of mismatch in GvH-HCT can induce "non-cognate transplantation tolerance" that dampens not only a mismatch-specific GvH response, which is beneficial, but adversely affects also responses to mismatch-unrelated antigens, such as CMV antigens in the specific case, with the consequence of lethal CMV disease.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos , Citomegalovirus/genética , Infecciones por Citomegalovirus/prevención & control , Evasión Inmune , Ratones , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA