Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(6): 1536-1552.e23, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150623

RESUMEN

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.


Asunto(s)
Proteínas de la Membrana/metabolismo , Obesidad/metabolismo , Esfingolípidos/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Animales , Apoptosis , Línea Celular , Células HeLa , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Obesidad/fisiopatología , Esfingolípidos/fisiología , Esfingosina N-Aciltransferasa/fisiología
2.
PLoS Biol ; 20(3): e3001561, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239643

RESUMEN

Type 2 diabetes (T2D) and cardiovascular disease (CVD) represent significant disease burdens for most societies and susceptibility to these diseases is strongly influenced by diet and lifestyle. Physiological changes associated with T2D or CVD, such has high blood pressure and cholesterol and glucose levels in the blood, are often apparent prior to disease incidence. Here we integrated genetics, lipidomics, and standard clinical diagnostics to assess future T2D and CVD risk for 4,067 participants from a large prospective population-based cohort, the Malmö Diet and Cancer-Cardiovascular Cohort. By training Ridge regression-based machine learning models on the measurements obtained at baseline when the individuals were healthy, we computed several risk scores for T2D and CVD incidence during up to 23 years of follow-up. We used these scores to stratify the participants into risk groups and found that a lipidomics risk score based on the quantification of 184 plasma lipid concentrations resulted in a 168% and 84% increase of the incidence rate in the highest risk group and a 77% and 53% decrease of the incidence rate in lowest risk group for T2D and CVD, respectively, compared to the average case rates of 13.8% and 22.0%. Notably, lipidomic risk correlated only marginally with polygenic risk, indicating that the lipidome and genetic variants may constitute largely independent risk factors for T2D and CVD. Risk stratification was further improved by adding standard clinical variables to the model, resulting in a case rate of 51.0% and 53.3% in the highest risk group for T2D and CVD, respectively. The participants in the highest risk group showed significantly altered lipidome compositions affecting 167 and 157 lipid species for T2D and CVD, respectively. Our results demonstrated that a subset of individuals at high risk for developing T2D or CVD can be identified years before disease incidence. The lipidomic risk, which is derived from only one single mass spectrometric measurement that is cheap and fast, is informative and could extend traditional risk assessment based on clinical assays.


Asunto(s)
Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Lipidómica/métodos , Herencia Multifactorial/genética , Medición de Riesgo/estadística & datos numéricos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/metabolismo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Genómica/métodos , Humanos , Incidencia , Lípidos/sangre , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Medición de Riesgo/métodos , Factores de Riesgo , Suecia/epidemiología
3.
Proteomics ; : e2300606, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602226

RESUMEN

Lipidomic data often exhibit missing data points, which can be categorized as missing completely at random (MCAR), missing at random, or missing not at random (MNAR). In order to utilize statistical methods that require complete datasets or to improve the identification of potential effects in statistical comparisons, imputation techniques can be employed. In this study, we investigate commonly used methods such as zero, half-minimum, mean, and median imputation, as well as more advanced techniques such as k-nearest neighbor and random forest imputation. We employ a combination of simulation-based approaches and application to real datasets to assess the performance and effectiveness of these methods. Shotgun lipidomics datasets exhibit high correlations and missing values, often due to low analyte abundance, characterized as MNAR. In this context, k-nearest neighbor approaches based on correlation and truncated normal distributions demonstrate best performance. Importantly, both methods can effectively impute missing values independent of the type of missingness, the determination of which is nearly impossible in practice. The imputation methods still control the type I error rate.

4.
PLoS Biol ; 17(10): e3000443, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626640

RESUMEN

Obesity is associated with changes in the plasma lipids. Although simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. We aimed at predicting different measures of obesity based on the plasma lipidome in a large population cohort using advanced machine learning modeling. A total of 1,061 participants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183 plasma lipid species were measured in a novel mass spectrometric shotgun approach. Multiple machine intelligence models were trained to predict obesity estimates, i.e., body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage (BFP), and validated in 250 randomly chosen participants of the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipidome predicted BFP the best (R2 = 0.73), based on a Lasso model. In this model, the strongest positive and the strongest negative predictor were sphingomyelin molecules, which differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-related aberrations of lipid metabolism. Moreover, we used this regression to probe the clinically relevant information contained in the plasma lipidome and found that the plasma lipidome also contains information about body fat distribution, because WHR (R2 = 0.65) was predicted more accurately than BMI (R2 = 0.47). These modeling results required full resolution of the lipidome to lipid species level, and the predicting set of biomarkers had to be sufficiently large. The power of the lipidomics association was demonstrated by the finding that the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation analyses of the individual lipid species, controlled for age and separated by sex, underscores the multiparametric and lipid species-specific nature of the correlation with the BFP. Lipidomic measurements in combination with machine intelligence modeling contain rich information about body fat amount and distribution beyond traditional clinical assays.


Asunto(s)
Tejido Adiposo/metabolismo , Distribución de la Grasa Corporal/estadística & datos numéricos , Lipidómica , Aprendizaje Automático , Obesidad/diagnóstico , Biomarcadores/sangre , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Finlandia , Humanos , Metabolismo de los Lípidos , Masculino , Modelos Estadísticos , Obesidad/sangre , Factores Sexuales , Esfingomielinas/sangre , Circunferencia de la Cintura , Relación Cintura-Cadera
5.
Nat Rev Mol Cell Biol ; 11(10): 688-99, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20861879

RESUMEN

Ten years ago, we wrote a Review on lipid rafts and signalling in the launch issue of Nature Reviews Molecular Cell Biology. At the time, this field was suffering from ambiguous methodology and imprecise nomenclature. Now, new techniques are deepening our insight into the dynamics of membrane organization. Here, we discuss how the field has matured and present an evolving model in which membranes are occupied by fluctuating nanoscale assemblies of sphingolipids, cholesterol and proteins that can be stabilized into platforms that are important in signalling, viral infection and membrane trafficking.


Asunto(s)
Membrana Celular/fisiología , Microdominios de Membrana/fisiología , Biofisica/métodos , Caveolas/fisiología , Caveolas/ultraestructura , Membrana Celular/ultraestructura , Detergentes , Humanos , Complejo Mayor de Histocompatibilidad , Espectrometría de Masas/métodos , Microdominios de Membrana/genética , Microdominios de Membrana/ultraestructura , Transducción de Señal , Solubilidad , Espectrometría de Fluorescencia/métodos , Linfocitos T/inmunología , Linfocitos T/fisiología
6.
Diabetologia ; 64(9): 1982-1989, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34110439

RESUMEN

AIMS/HYPOTHESIS: Five clusters based on clinical characteristics have been suggested as diabetes subtypes: one autoimmune and four subtypes of type 2 diabetes. In the current study we replicate and cross-validate these type 2 diabetes clusters in three large cohorts using variables readily measured in the clinic. METHODS: In three independent cohorts, in total 15,940 individuals were clustered based on age, BMI, HbA1c, random or fasting C-peptide, and HDL-cholesterol. Clusters were cross-validated against the original clusters based on HOMA measures. In addition, between cohorts, clusters were cross-validated by re-assigning people based on each cohort's cluster centres. Finally, we compared the time to insulin requirement for each cluster. RESULTS: Five distinct type 2 diabetes clusters were identified and mapped back to the original four All New Diabetics in Scania (ANDIS) clusters. Using C-peptide and HDL-cholesterol instead of HOMA2-B and HOMA2-IR, three of the clusters mapped with high sensitivity (80.6-90.7%) to the previously identified severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD) and mild obesity-related diabetes (MOD) clusters. The previously described ANDIS mild age-related diabetes (MARD) cluster could be mapped to the two milder groups in our study: one characterised by high HDL-cholesterol (mild diabetes with high HDL-cholesterol [MDH] cluster), and the other not having any extreme characteristic (mild diabetes [MD]). When these two milder groups were combined, they mapped well to the previously labelled MARD cluster (sensitivity 79.1%). In the cross-validation between cohorts, particularly the SIDD and MDH clusters cross-validated well, with sensitivities ranging from 73.3% to 97.1%. SIRD and MD showed a lower sensitivity, ranging from 36.1% to 92.3%, where individuals shifted from SIRD to MD and vice versa. People belonging to the SIDD cluster showed the fastest progression towards insulin requirement, while the MDH cluster showed the slowest progression. CONCLUSIONS/INTERPRETATION: Clusters based on C-peptide instead of HOMA2 measures resemble those based on HOMA2 measures, especially for SIDD, SIRD and MOD. By adding HDL-cholesterol, the MARD cluster based upon HOMA2 measures resulted in the current clustering into two clusters, with one cluster having high HDL levels. Cross-validation between cohorts showed generally a good resemblance between cohorts. Together, our results show that the clustering based on clinical variables readily measured in the clinic (age, HbA1c, HDL-cholesterol, BMI and C-peptide) results in informative clusters that are representative of the original ANDIS clusters and stable across cohorts. Adding HDL-cholesterol to the clustering resulted in the identification of a cluster with very slow glycaemic deterioration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Glucemia , Péptido C , Humanos , Insulina
7.
Kidney Int ; 96(6): 1381-1388, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31679767

RESUMEN

Clinical risk factors explain only a fraction of the variability of estimated glomerular filtration rate (eGFR) decline in people with type 2 diabetes. Cross-omics technologies by virtue of a wide spectrum screening of plasma samples have the potential to identify biomarkers for the refinement of prognosis in addition to clinical variables. Here we utilized proteomics, metabolomics and lipidomics panel assay measurements in baseline plasma samples from the multinational PROVALID study (PROspective cohort study in patients with type 2 diabetes mellitus for VALIDation of biomarkers) of patients with incident or early chronic kidney disease (median follow-up 35 months, median baseline eGFR 84 mL/min/1.73 m2, urine albumin-to-creatinine ratio 8.1 mg/g). In an accelerated case-control study, 258 individuals with a stable eGFR course (median eGFR change 0.1 mL/min/year) were compared to 223 individuals with a rapid eGFR decline (median eGFR decline -6.75 mL/min/year) using Bayesian multivariable logistic regression models to assess the discrimination of eGFR trajectories. The analysis included 402 candidate predictors and showed two protein markers (KIM-1, NTproBNP) to be relevant predictors of the eGFR trajectory with baseline eGFR being an important clinical covariate. The inclusion of metabolomic and lipidomic platforms did not improve discrimination substantially. Predictions using all available variables were statistically indistinguishable from predictions using only KIM-1 and baseline eGFR (area under the receiver operating characteristic curve 0.63). Thus, the discrimination of eGFR trajectories in patients with incident or early diabetic kidney disease and maintained baseline eGFR was modest and the protein marker KIM-1 was the most important predictor.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Insuficiencia Renal Crónica/sangre , Anciano , Teorema de Bayes , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
J Biol Chem ; 292(15): 6177-6189, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28258214

RESUMEN

The lysosomal acid ß-glucosidase GBA1 and the non-lysosomal ß-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of ß-glucosidase activity in general.


Asunto(s)
Regulación hacia Abajo , Enfermedad de Gaucher/enzimología , Regulación Enzimológica de la Expresión Génica , Modelos Biológicos , Esfingosina/metabolismo , beta-Glucosidasa/biosíntesis , Animales , Línea Celular , Enfermedad de Gaucher/genética , Glucosilceramidasa , Glucosilceramidas/genética , Glucosilceramidas/metabolismo , Humanos , Masculino , Ratones , Esfingosina/genética , beta-Glucosidasa/genética
9.
PLoS Pathog ; 12(3): e1005476, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26939061

RESUMEN

The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV), a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.


Asunto(s)
Virus de la Diarrea Viral Bovina/ultraestructura , Proteínas del Envoltorio Viral/ultraestructura , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/ultraestructura , Bovinos , Línea Celular , Microscopía por Crioelectrón , Virus de la Diarrea Viral Bovina/genética , Virus de la Diarrea Viral Bovina/inmunología , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas del Envoltorio Viral/genética , Virión
10.
Traffic ; 14(5): 551-67, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23369235

RESUMEN

The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (i) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3-5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2-Cn cis cisternae grow through COPII vesicle fusion. (v) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (vii) In plants, ∼90% of native α-mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells.


Asunto(s)
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Núcleo Celular/metabolismo , Manosidasas/genética , Microscopía Electrónica , Microscopía Inmunoelectrónica , Especificidad de la Especie
11.
Anal Chem ; 86(8): 3722-6, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24628620

RESUMEN

Protein-lipid interactions within the membrane are difficult to detect with mass spectrometry because of the hydrophobicity of tryptic cleavage peptides on the one hand and the noncovalent nature of the protein-lipid interaction on the other hand. Here we describe a proof-of-principle method capable of resolving hydrophobic and acylated (e.g., myristoylated) peptides by optimizing the steps in a mass spectrometric workflow. We then use this optimized workflow to detect a protein-lipid interaction in vitro within the hydrophobic phase of the membrane that is preserved via a covalent cross-link using a photoactivatable lipid. This approach can also be used to map the site of a protein-lipid interaction as we identify the peptide in contact with the fatty acid part of ceramide in the START domain of the CERT protein.


Asunto(s)
Lípidos/química , Membranas/química , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ceramidas/análisis , Reactivos de Enlaces Cruzados , Ácidos Grasos/análisis , Hidrólisis , Modelos Moleculares , Octanoles/química , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteolípidos , Solventes , Tripsina
12.
Cell Microbiol ; 15(2): 292-304, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23279151

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that obtains its lipid envelope by budding through the plasma membrane of infected host cells. Various studies indicated that the HIV-1 membrane differs from the producer cell plasma membrane suggesting virus budding from pre-existing subdomains or virus-mediated induction of a specialized budding membrane. To perform a comparative lipidomics analysis by quantitative mass spectrometry, we first evaluated two independent methods to isolate the cellular plasma membrane. Subsequent lipid analysis of plasma membranes and HIV-1 purified from two different cell lines revealed a significantly different lipid composition of the viral membrane compared with the host cell plasma membrane, independent of the cell type investigated. Virus particles were significantly enriched in phosphatidylserine, sphingomyelin, hexosylceramide and saturated phosphatidylcholine species when compared with the host cell plasma membrane of the producer cells; they showed reduced levels of unsaturated phosphatidylcholine species, phosphatidylethanolamine and phosphatidylinositol. Cell type-specific differences in the lipid composition of HIV-1 and donor plasmamembranes were observed for plasmalogen-phosphatidylethanolamine and phosphatidylglycerol, which were strongly enriched only in HIV-1 derived from MT-4 cells. MT-4 cell-derived HIV-1 also contained dihydrosphingomyelin as reported previously, but this lipid class was also enriched in the host cell membrane. Taken together, these data strongly support the hypothesis that HIV-1 selects a specific lipid environment for its morphogenesis.


Asunto(s)
VIH-1/química , Microdominios de Membrana/química , Virión/química , Fraccionamiento Celular , Línea Celular , Ceramidas/análisis , VIH-1/fisiología , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Espectrometría de Masas , Microdominios de Membrana/fisiología , Fosfatidilcolinas/análisis , Fosfatidilinositoles/análisis , Fosfatidilserinas/análisis , Esfingomielinas/análisis , Virión/fisiología
13.
Proc Natl Acad Sci U S A ; 108(5): 1903-7, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245337

RESUMEN

Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet.


Asunto(s)
Lípidos de la Membrana/metabolismo , Animales , Línea Celular , Perros , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Morfogénesis
14.
Atherosclerosis ; 392: 117479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423808

RESUMEN

BACKGROUND AND AIMS: Obesity and type 2 diabetes are significant risk factors for atherosclerotic cardiovascular disease (CVD) worldwide, but the underlying pathophysiological links are poorly understood. Neurotensin (NT), a 13-amino-acid hormone peptide, facilitates intestinal fat absorption and contributes to obesity in mice fed a high-fat diet. Elevated levels of pro-NT (a stable NT precursor produced in equimolar amounts relative to NT) are associated with obesity, type 2 diabetes, and CVD in humans. Whether NT is a causative factor in CVD is unknown. METHODS: Nt+/+ and Nt-/- mice were either injected with adeno-associated virus encoding PCSK9 mutants or crossed with Ldlr-/- mice and fed a Western diet. Atherosclerotic plaques were analyzed by en face analysis, Oil Red O and CD68 staining. In humans, we evaluated the association between baseline pro-NT and growth of carotid bulb thickness after 16.4 years. Lipidomic profiles were analyzed. RESULTS: Atherosclerotic plaque formation is attenuated in Nt-deficient mice through mechanisms that are independent of reductions in circulating cholesterol and triglycerides but associated with remodeling of the plasma triglyceride pool. An increasing plasma concentration of pro-NT predicts atherosclerotic events in coronary and cerebral arteries independent of all major traditional risk factors, indicating a strong link between NT and atherosclerosis. This plasma lipid profile analysis confirms the association of pro-NT with remodeling of the plasma triglyceride pool in atherosclerotic events. CONCLUSIONS: Our findings are the first to directly link NT to increased atherosclerosis and indicate the potential role for NT in preventive and therapeutic strategies for CVD.


Asunto(s)
Aterosclerosis , Ratones Noqueados , Neurotensina , Placa Aterosclerótica , Triglicéridos , Animales , Neurotensina/sangre , Triglicéridos/sangre , Aterosclerosis/sangre , Humanos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Femenino , Ratones , Receptores de LDL/genética , Receptores de LDL/deficiencia , Factores de Riesgo , Ácidos Grasos/metabolismo , Ácidos Grasos/sangre , Persona de Mediana Edad , Precursores de Proteínas
15.
Front Endocrinol (Lausanne) ; 15: 1350796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510703

RESUMEN

Introduction: Type 2 diabetes (T2D) onset, progression and outcomes differ substantially between individuals. Multi-omics analyses may allow a deeper understanding of these differences and ultimately facilitate personalised treatments. Here, in an unsupervised "bottom-up" approach, we attempt to group T2D patients based solely on -omics data generated from plasma. Methods: Circulating plasma lipidomic and proteomic data from two independent clinical cohorts, Hoorn Diabetes Care System (DCS) and Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS), were analysed using Similarity Network Fusion. The resulting patient network was analysed with Logistic and Cox regression modelling to explore relationships between plasma -omic profiles and clinical characteristics. Results: From a total of 1,134 subjects in the two cohorts, levels of 180 circulating plasma lipids and 1195 proteins were used to separate patients into two subgroups. These differed in terms of glycaemic deterioration (Hazard Ratio=0.56;0.73), insulin sensitivity and secretion (C-peptide, p=3.7e-11;2.5e-06, DCS and GoDARTS, respectively; Homeostatic model assessment 2 (HOMA2)-B; -IR; -S, p=0.0008;4.2e-11;1.1e-09, only in DCS). The main molecular signatures separating the two groups included triacylglycerols, sphingomyelin, testican-1 and interleukin 18 receptor. Conclusions: Using an unsupervised network-based fusion method on plasma lipidomics and proteomics data from two independent cohorts, we were able to identify two subgroups of T2D patients differing in terms of disease severity. The molecular signatures identified within these subgroups provide insights into disease mechanisms and possibly new prognostic markers for T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Proteómica , Multiómica
16.
Nat Commun ; 14(1): 6934, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907536

RESUMEN

The human plasma lipidome captures risk for cardiometabolic diseases. To discover new lipid-associated variants and understand the link between lipid species and cardiometabolic disorders, we perform univariate and multivariate genome-wide analyses of 179 lipid species in 7174 Finnish individuals. We fine-map the associated loci, prioritize genes, and examine their disease links in 377,277 FinnGen participants. We identify 495 genome-trait associations in 56 genetic loci including 8 novel loci, with a considerable boost provided by the multivariate analysis. For 26 loci, fine-mapping identifies variants with a high causal probability, including 14 coding variants indicating likely causal genes. A phenome-wide analysis across 953 disease endpoints reveals disease associations for 40 lipid loci. For 11 coronary artery disease risk variants, we detect strong associations with lipid species. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomics data and reveals genetic links between diseases and lipid species beyond the standard lipids.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Humanos , Lipidómica , Enfermedad de la Arteria Coronaria/genética , Fenotipo , Lípidos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
17.
Nat Commun ; 14(1): 2533, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137910

RESUMEN

We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratones , Animales , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Lípidos , Biomarcadores/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
18.
Sci Rep ; 12(1): 10533, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732804

RESUMEN

Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Animales , Ácidos Grasos/genética , Técnicas de Inactivación de Genes , Metabolismo de los Lípidos/genética , Lípidos/genética , Mamíferos
19.
J Am Heart Assoc ; 11(19): e027103, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193934

RESUMEN

Background Despite well-recognized differences in the atherosclerotic cardiovascular disease risk between men and women, sex differences in risk factors and sex-specific mechanisms in the pathophysiology of atherosclerotic cardiovascular disease remain poorly understood. Lipid metabolism plays a central role in the development of atherosclerotic cardiovascular disease. Understanding sex differences in lipids and their genetic determinants could provide mechanistic insights into sex differences in atherosclerotic cardiovascular disease and aid in precise risk assessment. Herein, we examined sex differences in plasma lipidome and heterogeneity in genetic influences on lipidome in men and women through sex-stratified genome-wide association analyses. Methods and Results We used data consisting of 179 lipid species measured by shotgun lipidomics in 7266 individuals from the Finnish GeneRISK cohort and sought for replication using independent data from 2045 participants. Significant sex differences in the levels of 141 lipid species were observed (P<7.0×10-4). Interestingly, 121 lipid species showed significant age-sex interactions, with opposite age-related changes in 39 lipid species. In general, most of the cholesteryl esters, ceramides, lysophospholipids, and glycerides were higher in 45- to 50-year-old men compared with women of same age, but the sex differences narrowed down or reversed with age. We did not observe any major differences in genetic effect in the sex-stratified genome-wide association analyses, which suggests that common genetic variants do not have a major role in sex differences in lipidome. Conclusions Our study provides a comprehensive view of sex differences in circulatory lipids pointing to potential sex differences in lipid metabolism and highlights the need for sex- and age-specific prevention strategies.


Asunto(s)
Enfermedades Cardiovasculares , Lipidómica , Enfermedades Cardiovasculares/genética , Ceramidas , Ésteres del Colesterol , Femenino , Estudio de Asociación del Genoma Completo , Glicéridos , Humanos , Lípidos , Lisofosfolípidos , Masculino , Persona de Mediana Edad , Caracteres Sexuales
20.
Int J Cardiol ; 331: 249-254, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33545264

RESUMEN

BACKGROUND: Dyslipidemia is a hallmark of cardiovascular disease but is characterized by crude measurements of triglycerides, HDL- and LDL cholesterol. Lipidomics enables more detailed measurements of plasma lipids, which may help improve risk stratification and understand the pathophysiology of cardiovascular disease. METHODS: Lipidomics was used to measure 184 lipids in plasma samples from the Malmö Diet and Cancer - Cardiovascular Cohort (N = 3865), taken at baseline examination. During an average follow-up time of 20.3 years, 536 participants developed coronary artery disease (CAD). Least absolute shrinkage and selection operator (LASSO) were applied to Cox proportional hazards models in order to identify plasma lipids that predict CAD. RESULTS: Eight plasma lipids improved prediction of future CAD on top of traditional cardiovascular risk factors. Principal component analysis of CAD-associated lipids revealed one principal component (PC2) that was associated with risk of future CAD (HR per SD increment =1.46, C·I = 1.35-1.48, P < 0.001). The risk increase for being in the highest quartile of PC2 (HR = 2.33, P < 0.001) was higher than being in the top quartile of systolic blood pressure. Addition of PC2 to traditional risk factors achieved an improvement (2%) in the area under the ROC-curve for CAD events occurring within 10 (P = 0.03), 15 (P = 0.003) and 20 (P = 0.001) years of follow-up respectively. CONCLUSIONS: A lipid pattern improve CAD prediction above traditional risk factors, highlighting that conventional lipid-measures insufficiently describe dyslipidemia that is present years before CAD. Identifying this hidden dyslipidemia may help motivate lifestyle and pharmacological interventions early enough to reach a substantial reduction in absolute risk.


Asunto(s)
Enfermedad de la Arteria Coronaria , HDL-Colesterol , LDL-Colesterol , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/epidemiología , Humanos , Lípidos , Factores de Riesgo , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA