Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Evol Appl ; 14(9): 2221-2230, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603494

RESUMEN

Understanding population connectivity within a species as well as potential interactions with its close relatives is crucial to define management units and to derive efficient management actions. However, although genetics can reveal mismatches between biological and management units and other relevant but hidden information such as species misidentification or hybridization, the uptake of genetic methods by the fisheries management process is far from having been consolidated. Here, we have assessed the power of genetics to better understand the population connectivity of white (Lophius piscatorius) and its interaction with its sister species, the black anglerfish (Lophius budegassa). Our analyses, based on thousands of genome-wide single nucleotide polymorphisms, show three findings that are crucial for white anglerfish management. We found (i) that white anglerfish is likely composed of a single panmictic population throughout the Northeast Atlantic, challenging the three-stock based management, (ii) that a fraction of specimens classified as white anglerfish using morphological characteristics are genetically identified as black anglerfish (L. budegassa), and iii) that the two Lophius species naturally hybridize leading to a population of hybrids of up to 20% in certain areas. Our results set the basics for a genetics-informed white anglerfish assessment framework that accounts for stock connectivity, revises and establishes new diagnostic characters for Lophius species identification, and evaluates the effect of hybrids in the current and future assessments of the white anglerfish. Furthermore, our study contributes to provide additional evidence of the potentially negative consequences of ignoring genetic data for assessing fisheries resources.

2.
Mar Pollut Bull ; 101(1): 320-329, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26530881

RESUMEN

Unusual peaks in turbidity were detected in two branches of the Whittard Canyon in June 2013. Enhanced nepheloid layers (ENLs) were defined as layers with concentrations of suspended particulate matter exceeding those of nepheloid layers typically observed in a given region. Here, ENLs had peaks in turbidity and elevated suspended particulate matter concentrations exceeding ~1 mg L(-1) with the largest ENLs measuring between ~2-8 mg L(-1). The ENLs measured ~100-260 m in vertical height and were detected in water depths of between 640 and 2880 m. Vessel Monitoring System data showed that high spatial and temporal activity of potential bottom trawling vessels coincided with the occurrence of the ENLs. Molar C/N ratios of the suspended organic material from the ENLs showed a high degree of degradation. Regular occurrences of such events are likely to have implications for increased sediment fluxes, burial of organic carbon and alteration of benthic and canyon ecosystems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Material Particulado/análisis , Navíos , Movimientos del Agua , Océano Atlántico , Actividades Humanas , Hidrología , Modelos Teóricos
3.
Curr Biol ; 24(11): R514-5, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24892908

RESUMEN

Exploitation of the seas is currently unsustainable, with increasing demand for marine resources placing intense pressure on the Earth's largest ecosystem [1]. The scale of anthropogenic effects varies from local to entire ocean basins [1-3]. For example, discards of commercial capture fisheries can have both positive and negative impacts on scavengers at the population and community-level [2-6], although this is driven by individual foraging behaviour [3,7]. Currently, we have little understanding of the scale at which individual animals initiate such behaviours. We use the known interaction between fisheries and a wide-ranging seabird, the Northern gannet Morus bassanus[3], to investigate how fishing vessels affect individual birds' behaviours in near real-time. We document the footprint of fishing vessels' (≥15 m length) influence on foraging decisions (≤11 km), and a potential underlying behavioural mechanism, by revealing how birds respond differently to vessels depending on gear type and activity. Such influences have important implications for fisheries, including the proposed discard ban [8]), and wider marine management.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Conducta Alimentaria , Explotaciones Pesqueras , Movimiento , Animales , Océano Atlántico , Inglaterra , Irlanda , Modelos Biológicos , Escocia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA