Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Biotechnol ; 25(2): 221-31, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17259976

RESUMEN

The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.


Asunto(s)
Aspergillus niger/genética , Mapeo Cromosómico , Cromosomas Fúngicos/genética , Genoma Fúngico/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Datos de Secuencia Molecular
2.
Fungal Genet Biol ; 46 Suppl 1: S2-13, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19146970

RESUMEN

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Genoma Fúngico , Genómica , Aspergillus nidulans/fisiología
3.
Biotechnol Lett ; 30(12): 2173-81, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18679585

RESUMEN

Expression of proteins on the surface of yeasts has a wide range of applications in biotechnology, such as directed evolution of proteins for increased affinity and thermal stability, screening of antibody libraries, epitope mapping, and use as whole-cell biocatalysts. However, hyperglycosylation can interfere with overall protein accessibility on the surface. Therefore, the less elaborate hyperglycosylation in wild type Pichia pastoris and the availability of glycoengineered strains make this yeast an excellent alternative for surface display of glycoproteins. Here, we report the implementation of the well-established a-agglutinin-based yeast surface display technology in P. pastoris. Four heterologous proteins were expressed on the surface of a wild type and a glycoengineered strain. Surface display levels were monitored by Western blot, immunofluorescence microscopy, and FACS analysis. The availability of glycoengineered strains makes P. pastoris an excellent alternative for surface display of glycoproteins and paves the way for new applications.


Asunto(s)
Ingeniería Genética , Glicoproteínas de Membrana/metabolismo , Pichia/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Western Blotting , Clonación Molecular , Citometría de Flujo , Regulación Fúngica de la Expresión Génica , Vectores Genéticos , Glicosilación , Humanos , Glicoproteínas de Membrana/genética , Microscopía Fluorescente , Pichia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Methods Mol Biol ; 389: 119-38, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17951639

RESUMEN

Glycosylation is an important issue in heterologous protein production for therapeutic applications. Glycoproteins produced in Pichia pastoris contain high mannose glycan structures that can hamper downstream processing, might be immunogenic, and cause rapid clearance from the circulation. This chapter describes a method that helps solving these glycosylation-related problems by inactivation of OCH1, overexpression of an HDEL-tagged mannosidase, and overexpression of a Kre2/GlcNAc-transferase I chimeric enzyme. Different plasmids are described as well as glycan analysis methods.


Asunto(s)
Plásmidos/genética , Polisacáridos/biosíntesis , Retículo Endoplásmico/enzimología , Glicosilación , Aparato de Golgi/enzimología , Humanos , Manosidasas/metabolismo , Manosiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Pichia/enzimología
5.
PLoS One ; 7(6): e39976, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768188

RESUMEN

Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as "generally recognized as safe." Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man(3)GlcNAc(2) structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man(5)GlcNAc(2) and GlcMan(5)GlcNAc(2) glycans, and to a lesser extent with Glc(2)Man(5)GlcNAc(2) glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man(3)GlcNAc(2) structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.


Asunto(s)
Ingeniería Genética , Glicoproteínas/biosíntesis , Oligosacáridos/biosíntesis , Polisacáridos/biosíntesis , Yarrowia/genética , Animales , Electroforesis en Gel de Poliacrilamida , Retículo Endoplásmico/enzimología , Técnicas de Inactivación de Genes , Genes Fúngicos/genética , Glucosa/metabolismo , Glicoproteínas/química , Glicosilación , Humanos , Lipasa/metabolismo , Manosidasas/metabolismo , Oligosacáridos/química , Polisacáridos/química , Ratas , Trypanosoma brucei brucei/enzimología , Yarrowia/enzimología , alfa-Glucosidasas/metabolismo
6.
Nat Biotechnol ; 30(12): 1225-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23159880

RESUMEN

Lysosomal storage diseases are treated with human lysosomal enzymes produced in mammalian cells. Such enzyme therapeutics contain relatively low levels of mannose-6-phosphate, which is required to target them to the lysosomes of patient cells. Here we describe a method for increasing mannose-6-phosphate modification of lysosomal enzymes produced in yeast. We identified a glycosidase from C. cellulans that 'uncaps' N-glycans modified by yeast-type mannose-Pi-6-mannose to generate mammalian-type N-glycans with a mannose-6-phosphate substitution. Determination of the crystal structure of this glycosidase provided insight into its substrate specificity. We used this uncapping enzyme together with α-mannosidase to produce in yeast a form of the Pompe disease enzyme α-glucosidase rich in mannose-6-phosphate. Compared with the currently used therapeutic version, this form of α-glucosidase was more efficiently taken up by fibroblasts from Pompe disease patients, and it more effectively reduced cardiac muscular glycogen storage in a mouse model of the disease.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Lisosomas/enzimología , Manosafosfatos/metabolismo , Animales , Arthrobacter/enzimología , Arthrobacter/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico Activo , Biotecnología , Dominio Catalítico/genética , Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Humanos , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/enzimología , Enfermedades por Almacenamiento Lisosomal/genética , Ratones , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pichia/enzimología , Pichia/genética , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Yarrowia/enzimología , Yarrowia/genética , alfa-Glucosidasas/deficiencia , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
7.
Nat Protoc ; 4(1): 58-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19131957

RESUMEN

Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes approximately 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal(2)GlcNAc(2)Man(3)GlcNAc(2)N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected.


Asunto(s)
Glucosiltransferasas/genética , Pichia/genética , Ingeniería de Proteínas/métodos , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Vectores Genéticos/genética , Glucosiltransferasas/metabolismo , Glicosilación , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Pichia/metabolismo
8.
Appl Environ Microbiol ; 71(6): 2910-24, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15932985

RESUMEN

We describe isolation and characterization of the gene encoding the glucosidase II alpha subunit (GIIalpha) of the industrially important fungus Trichoderma reesei. This subunit is the catalytic part of the glucosidase II heterodimeric enzyme involved in the structural modification within the endoplasmic reticulum (ER) of N-linked oligosaccharides present on glycoproteins. The gene encoding GIIalpha (gls2alpha) in the hypercellulolytic strain Rut-C30 contains a frameshift mutation resulting in a truncated gene product. Based on the peculiar monoglucosylated N-glycan pattern on proteins produced by the strain, we concluded that the truncated protein can still hydrolyze the first alpha-1,3-linked glucose residue but not the innermost alpha-1,3-linked glucose residue from the Glc2Man9GlcNAc2 N-glycan ER structure. Transformation of the Rut-C30 strain with a repaired T. reesei gls2alpha gene changed the glycosylation profile significantly, decreasing the amount of monoglucosylated structures and increasing the amount of high-mannose N-glycans. Full conversion to high-mannose carbohydrates was not obtained, and this was probably due to competition between the endogenous mutant subunit and the introduced wild-type GIIalpha protein. Since glucosidase II is also involved in the ER quality control of nascent polypeptide chains, its transcriptional regulation was studied in a strain producing recombinant tissue plasminogen activator (tPA) and in cultures treated with the stress agents dithiothreitol (DTT) and brefeldin A (BFA), which are known to block protein transport and to induce the unfolded protein response. While the mRNA levels were clearly upregulated upon tPA production or BFA treatment, no such enhancement was observed after DTT addition.


Asunto(s)
Clonación Molecular , Mutación del Sistema de Lectura , Subunidades de Proteína , Trichoderma/enzimología , alfa-Glucosidasas , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicosilación , Datos de Secuencia Molecular , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Análisis de Secuencia de ADN , Trichoderma/genética , Trichoderma/crecimiento & desarrollo , alfa-Glucosidasas/química , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
9.
Appl Environ Microbiol ; 70(5): 2639-46, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15128513

RESUMEN

The Pichia pastoris N-glycosylation pathway is only partially homologous to the pathway in human cells. In the Golgi apparatus, human cells synthesize complex oligosaccharides, whereas Pichia cells form mannose structures that can contain up to 40 mannose residues. This hypermannosylation of secreted glycoproteins hampers the downstream processing of heterologously expressed glycoproteins and leads to the production of protein-based therapeutic agents that are rapidly cleared from the blood because of the presence of terminal mannose residues. Here, we describe engineering of the P. pastoris N-glycosylation pathway to produce nonhyperglycosylated hybrid glycans. This was accomplished by inactivation of OCH1 and overexpression of an alpha-1,2-mannosidase retained in the endoplasmic reticulum and N-acetylglucosaminyltransferase I and beta-1,4-galactosyltransferase retained in the Golgi apparatus. The engineered strain synthesized a nonsialylated hybrid-type N-linked oligosaccharide structure on its glycoproteins. The procedures which we developed allow glycan engineering of any P. pastoris expression strain and can yield up to 90% homogeneous protein-linked oligosaccharides.


Asunto(s)
Ingeniería Genética/métodos , Pichia/metabolismo , Polisacáridos/biosíntesis , Biotecnología/métodos , Retículo Endoplásmico/enzimología , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicosilación , Aparato de Golgi/enzimología , Humanos , Manosidasas/genética , Manosidasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Pichia/genética , Pichia/crecimiento & desarrollo , Polisacáridos/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
10.
Glycobiology ; 14(8): 713-24, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15070858

RESUMEN

The glycosylation of Cel7A (CBH I) from Trichoderma reesei varies considerably when the fungus is grown under different conditions. As shown by ESI-MS and PAG-IEF analyses of both intact protein and the isolated catalytic core module, the microheterogeneity originates mainly from the variable ratio of single N-acetylglucosamine over high-mannose structures on the three N-glycosylation sites and from the presence or absence of phosphate residues. Fully N- and O-glycosylated Cel7A can only be isolated from minimal medium and probably reflects the initial complexity of the protein on leaving the glycosynthetic pathway. Extracellular activities are responsible for postsecretorial modifications in other cultivation conditions: alpha-(1-->2)-mannosidase, alpha-(1-->3)-glucosidase and an Endo H type activity participate in N-deglycosylation (core), whereas a phosphatase and a mannosidase are probably responsible for hydrolysis of O-glycans (linker). The effects are most prominent in corn steep liquor-enriched media, where the pH is closer to the pH optimum (5-6) of these extracellular hydrolases. In minimal medium, the low pH and the presence of proteases could explain for the absence of such activities. On the other hand, phosphodiester linkages in the catalytic module are only observed under specific conditions. The extracellular trigger is still unknown, but mannophosphorylation may be regulated intracellularly by alpha-(1-->2)-mannosidases and phosphomannosyl transferases competing for the same intermediate in the glycosynthetic pathway.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Trichoderma/enzimología , Dominio Catalítico , Medios de Cultivo , Líquido Extracelular/metabolismo , Glicosilación , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica , Polisacáridos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Trichoderma/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA