Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EXCLI J ; 18: 382-404, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338009

RESUMEN

This paper presents a simple and efficient computer-aided diagnosis method to classify Chronic Myeloid Leukemia (CML) cells based on microscopic image processing. In the proposed method, a novel combination of both typical and new features is introduced for classification of CML cells. Next, an effective decision tree classifier is proposed to classify CML cells into eight groups. The proposed method was evaluated on 1730 CML cell images containing 714 cells of non-cancerous bone marrow aspiration and 1016 cells of cancerous peripheral blood smears. The performance of the proposed classification method was compared to manual labels made by two experts. The average values of accuracy, specificity and sensitivity were 99.0 %, 99.4 % and 98.3 %, respectively for all groups of CML. In addition, Cohen's kappa coefficient demonstrated high conformity, 0.99, between joint diagnostic results of two experts and the obtained results of the proposed approach. According to the obtained results, the suggested method has a high capability to classify effective cells of CML and can be applied as a simple, affordable and reliable computer-aided diagnosis tool to help pathologists to diagnose CML.

2.
J Med Signals Sens ; 7(2): 92-101, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553582

RESUMEN

Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA