Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2405555121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805268

RESUMEN

The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 µs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.


Asunto(s)
ADN , Simulación de Dinámica Molecular , FN-kappa B , Unión Proteica , ADN/metabolismo , Humanos , FN-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Sitios de Unión , Cristalografía por Rayos X
2.
Mol Cell ; 67(3): 484-497.e5, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28689659

RESUMEN

Unlike prototypical IκB proteins, which are inhibitors of NF-κB RelA, cRel, and RelB dimers, the atypical IκB protein Bcl3 is primarily a transcriptional coregulator of p52 and p50 homodimers. Bcl3 exists as phospho-protein in many cancer cells. Unphosphorylated Bcl3 acts as a classical IκB-like inhibitor and removes p50 and p52 from bound DNA. Neither the phosphorylation site(s) nor the kinase(s) phosphorylating Bcl3 is known. Here we show that Akt, Erk2, and IKK1/2 phosphorylate Bcl3. Phosphorylation of Ser33 by Akt induces switching of K48 ubiquitination to K63 ubiquitination and thus promotes nuclear localization and stabilization of Bcl3. Phosphorylation by Erk2 and IKK1/2 of Ser114 and Ser446 converts Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. Cells expressing the S114A/S446A mutant have cellular proliferation and migration defects. This work links Akt and MAPK pathways to NF-κB through Bcl3 and provides mechanistic insight into how Bcl3 functions as an oncoprotein through collaboration with IKK1/2, Akt, and Erk2.


Asunto(s)
Quinasa I-kappa B/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transporte Activo de Núcleo Celular , Animales , Proteínas del Linfoma 3 de Células B , Movimiento Celular , Proliferación Celular , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Mutación , Subunidad p50 de NF-kappa B/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Células RAW 264.7 , Interferencia de ARN , Serina , Transducción de Señal , Factores de Transcripción/genética , Transfección , Ubiquitinación
3.
Mol Cell ; 63(4): 544-546, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540854

RESUMEN

Regulatory roles of protein and DNA modifications in gene expression during host defense have long been appreciated. In a recent article published in Nature Immunology, Li et al. (2016) provide a unique glimpse of yet another aspect of coordinated DNA methylation and protein acetylation in host response to pathogenic stimuli. They elegantly demonstrate that DNA methylation and transcriptional activation at the HDAC9 promoter by DNMT3a, along with lysine deacetylation of TBK1 by HDAC9, are essential events during host defense.


Asunto(s)
Histona Desacetilasas , Protamina Quinasa , Acetilación , ADN , Metilación de ADN , Histonas , Humanos , Metiltransferasas , Polinucleótido 5'-Hidroxil-Quinasa , Regiones Promotoras Genéticas
4.
Nucleic Acids Res ; 50(14): 8262-8278, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871302

RESUMEN

We recently reported that serine-arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner. Excess U1 snRNP selectively displaces some of the SR protein molecules from the pre-mRNA generating the substrate for splice signal-specific, sequential recognition by U1 snRNP, U2AF65 and U2AF35. Our work thus identifies a novel function of U1 snRNP in mammalian splicing substrate definition, explains the need for excess U1 snRNP compared to other U snRNPs in vivo, demonstrates how excess SR proteins could inhibit splicing, and provides a conceptual basis to examine if this mechanism of splicing substrate definition is employed by other splicing regulatory proteins.


Asunto(s)
Precursores del ARN , Empalme del ARN , Empalmosomas , Animales , Mamíferos/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
5.
J Biol Chem ; 298(5): 101864, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339487

RESUMEN

Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKß subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKß, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the "NEMO-binding domain" at the C terminus of IKK2/IKKß. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKß through this secondary interaction in vitro and for full activation of IKK2/IKKß in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKß within its scaffold-dimerization domain proximal to the kinase domain-Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture-based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKß for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Poliubiquitina , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Unión Proteica
6.
EMBO Rep ; 22(8): e52649, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34224210

RESUMEN

IκBs exert principal functions as cytoplasmic inhibitors of NF-kB transcription factors. Additional roles for IκB homologues have been described, including chromatin association and transcriptional regulation. Phosphorylated and SUMOylated IκBα (pS-IκBα) binds to histones H2A and H4 in the stem cell and progenitor cell compartment of skin and intestine, but the mechanisms controlling its recruitment to chromatin are largely unknown. Here, we show that serine 32-36 phosphorylation of IκBα favors its binding to nucleosomes and demonstrate that p-IκBα association with H4 depends on the acetylation of specific H4 lysine residues. The N-terminal tail of H4 is removed during intestinal cell differentiation by proteolytic cleavage by trypsin or chymotrypsin at residues 17-19, which reduces p-IκBα binding. Inhibition of trypsin and chymotrypsin activity in HT29 cells increases p-IκBα chromatin binding but, paradoxically, impaired goblet cell differentiation, comparable to IκBα deletion. Taken together, our results indicate that dynamic binding of IκBα to chromatin is a requirement for intestinal cell differentiation and provide a molecular basis for the understanding of the restricted nuclear distribution of p-IκBα in specific stem cell compartments.


Asunto(s)
Cromatina , Histonas , Acetilación , Cromatina/genética , Histonas/metabolismo , Humanos , Inhibidor NF-kappaB alfa/genética , Nucleosomas/genética
7.
Nucleic Acids Res ; 49(12): 7103-7121, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161584

RESUMEN

The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.


Asunto(s)
Precursores del ARN/química , Empalme del ARN , ARN Mensajero/química , Células HeLa , Humanos , Intrones , Mutación , Conformación de Ácido Nucleico , Dominios Proteicos , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina/química , Factores de Empalme Serina-Arginina/metabolismo , Factor de Empalme U2AF/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205441

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Asunto(s)
Ataxina-3/genética , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Enfermedad de Machado-Joseph/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Ataxina-3/metabolismo , Encéfalo/patología , Línea Celular , Roturas del ADN de Doble Cadena , Modelos Animales de Enfermedad , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Masculino , Ratones , Persona de Mediana Edad , Mutación , Péptidos/genética , ARN Interferente Pequeño/metabolismo
9.
J Biol Chem ; 296: 100723, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33932404

RESUMEN

Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.


Asunto(s)
ADN Glicosilasas/metabolismo , Pulmón/metabolismo , FN-kappa B/metabolismo , Animales , Movimiento Celular , Regulación de la Expresión Génica , Inflamación/metabolismo , Pulmón/patología , Ratones , Transducción de Señal
10.
Nucleic Acids Res ; 48(11): 6294-6309, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32402057

RESUMEN

Recognition of highly degenerate mammalian splice sites by the core spliceosomal machinery is regulated by several protein factors that predominantly bind exonic splicing motifs. These are postulated to be single-stranded in order to be functional, yet knowledge of secondary structural features that regulate the exposure of exonic splicing motifs across the transcriptome is not currently available. Using transcriptome-wide RNA structural information we show that retained introns in mouse are commonly flanked by a short (≲70 nucleotide), highly base-paired segment upstream and a predominantly single-stranded exonic segment downstream. Splicing assays with select pre-mRNA substrates demonstrate that loops immediately upstream of the introns contain pre-mRNA-specific splicing enhancers, the substitution or hybridization of which impedes splicing. Additionally, the exonic segments flanking the retained introns appeared to be more enriched in a previously identified set of hexameric exonic splicing enhancer (ESE) sequences compared to their spliced counterparts, suggesting that base-pairing in the exonic segments upstream of retained introns could be a means for occlusion of ESEs. The upstream exonic loops of the test substrate promoted recruitment of splicing factors and consequent pre-mRNA structural remodeling, leading up to assembly of the early spliceosome. These results suggest that disruption of exonic stem-loop structures immediately upstream (but not downstream) of the introns regulate alternative splicing events, likely through modulating accessibility of splicing factors.


Asunto(s)
Emparejamiento Base , Exones , Intrones , Empalme del ARN , Adenoviridae/genética , Animales , Secuencia de Bases , Elementos de Facilitación Genéticos , Exones/genética , Silenciador del Gen , Intrones/genética , Ratones , Células Madre Embrionarias de Ratones , Mutación , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalmosomas/metabolismo , Transcriptoma/genética , Globinas beta/genética
11.
Nucleic Acids Res ; 47(19): 9967-9989, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31501881

RESUMEN

The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.


Asunto(s)
ADN/genética , Genoma Humano/genética , FN-kappa B/genética , Elementos de Respuesta/genética , Cromatina/genética , Cristalografía por Rayos X , ADN/química , Humanos , Modelos Moleculares , FN-kappa B/química , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
12.
Mol Cell ; 47(1): 111-21, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22633953

RESUMEN

Besides activating NFκB by phosphorylating IκBs, IKKα/IKKß kinases are also involved in regulating metabolic insulin signaling, the mTOR pathway, Wnt signaling, and autophagy. How IKKß enzymatic activity is targeted to stimulus-specific substrates has remained unclear. We show here that NEMO, known to be essential for IKKß activation by inflammatory stimuli, is also a specificity factor that directs IKKß activity toward IκBα. Physical interaction and functional competition studies with mutant NEMO and IκB proteins indicate that NEMO functions as a scaffold to recruit IκBα to IKKß. Interestingly, expression of NEMO mutants that allow for IKKß activation by the cytokine IL-1, but fail to recruit IκBs, results in hyperphosphorylation of alternative IKKß substrates. Furthermore IKK's function in autophagy, which is independent of NFκB, is significantly enhanced without NEMO as IκB scaffold. Our work establishes a role for scaffolds such as NEMO in determining stimulus-specific signal transduction via the pleiotropic signaling hub IKK.


Asunto(s)
Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Células 3T3 , Animales , Autofagia/efectos de los fármacos , Western Blotting , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Proteínas I-kappa B/genética , Interleucina-1/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Microscopía Fluorescente , Complejos Multiproteicos/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica
13.
Adv Exp Med Biol ; 1172: 207-226, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31628658

RESUMEN

The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.


Asunto(s)
Quinasa I-kappa B , Proteínas I-kappa B , Sistema Inmunológico , FN-kappa B , Transducción de Señal , Animales , Humanos , Quinasa I-kappa B/inmunología , Proteínas I-kappa B/inmunología , Sistema Inmunológico/enzimología , FN-kappa B/inmunología , Fosforilación , Transducción de Señal/inmunología
14.
Biochemistry ; 57(20): 2943-2957, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29708732

RESUMEN

Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.


Asunto(s)
Coenzimas/química , Proteínas de Unión al ADN/química , FN-kappa B/química , Factor de Transcripción ReIA/química , Línea Celular , Núcleo Celular/química , Núcleo Celular/genética , Coenzimas/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Proteínas Ribosómicas/química , Factor de Transcripción ReIA/genética , Proteína p53 Supresora de Tumor/química
15.
J Biol Chem ; 292(46): 18821-18830, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28935669

RESUMEN

The nuclear factor κB (NF-κB) transcription factor family regulates genes involved in cell proliferation and inflammation. The promoters of these genes often contain NF-κB-binding sites (κB sites) arranged in tandem. How NF-κB activates transcription through these multiple sites is incompletely understood. We report here an X-ray crystal structure of homodimers comprising the RelA DNA-binding domain containing the Rel homology region (RHR) in NF-κB bound to an E-selectin promoter fragment with tandem κB sites. This structure revealed that two dimers bind asymmetrically to the symmetrically arranged κB sites at which multiple cognate contacts between one dimer to the corresponding DNA are broken. Because simultaneous RelA-RHR dimer binding to tandem sites in solution was anti-cooperative, we inferred that asymmetric RelA-RHR binding with fewer contacts likely indicates a dissociative binding mode. We found that both κB sites are essential for reporter gene activation by full-length RelA homodimer, suggesting that dimers facilitate DNA binding to each other even though their stable co-occupation is not promoted. Promoter variants with altered spacing and orientation of tandem κB sites displayed unexpected reporter activities that were not explained by the solution-binding pattern of RelA-RHR. Remarkably, full-length RelA bound all DNAs with a weaker affinity and specificity. Moreover, the transactivation domain played a negative role in DNA binding. These observations suggest that other nuclear factors influence full-length RelA binding to DNA by neutralizing the transactivation domain negative effect. We propose that DNA binding by NF-κB dimers is highly complex and modulated by facilitated association-dissociation processes.


Asunto(s)
ADN/metabolismo , Selectina E/genética , Regiones Promotoras Genéticas , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional , Animales , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN/genética , Regulación de la Expresión Génica , Ratones , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Factor de Transcripción ReIA/química
16.
Mol Cell ; 34(5): 591-602, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524538

RESUMEN

Nfkb1 and Nfkb2 proteins p105 and p100 serve both as NF-kappaB precursors and inhibitors of NF-kappaB dimers. In a biochemical characterization of endogenous cytoplasmic and purified recombinant proteins, we found that p105 and p100 assemble into high-molecular-weight complexes that contribute to the regulation of all NF-kappaB isoforms. Unlike the classical inhibitors IkappaBalpha, -beta, and -epsilon, high-molecular-weight complexes of p105 and p100 proteins bind NF-kappaB subunits in two modes: through direct dimerization of Rel homology domain-containing NF-kappaB polypeptides and through interactions of the p105 and p100 ankyrin repeats with preformed NF-kappaB dimers, thereby mediating the bona fide IkappaB activities, IkappaBgamma and IkappaBdelta. Our biochemical evidence suggests an assembly pathway in which kinetic mechanisms control NF-kappaB dimer formation via processing and assembly of large complexes that contain IkappaB activities.


Asunto(s)
Subunidad p50 de NF-kappa B/fisiología , Subunidad p52 de NF-kappa B/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B/química , Subunidad p50 de NF-kappa B/metabolismo , Subunidad p52 de NF-kappa B/química , Subunidad p52 de NF-kappa B/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Precursores de Proteínas/fisiología , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Alineación de Secuencia
17.
Proc Natl Acad Sci U S A ; 111(45): 15946-51, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349408

RESUMEN

Degradation of I kappaB (κB) inhibitors is critical to activation of dimeric transcription factors of the NF-κB family. There are two types of IκB inhibitors: the prototypical IκBs (IκBα, IκBß, and IκBε), which form low-molecular-weight (MW) IκB:NF-κB complexes that are highly stable, and the precursor IκBs (p105/IκBγ and p100/IκBδ), which form high-MW assemblies, thereby suppressing the activity of nearly half the cellular NF-κB [Savinova OV, Hoffmann A, Ghosh G (2009) Mol Cell 34(5):591-602]. The identity of these larger assemblies and their distinct roles in NF-κB inhibition are unknown. Using the X-ray crystal structure of the C-terminal domain of p100/IκBδ and functional analysis of structure-guided mutants, we show that p100/IκBδ forms high-MW (IκBδ)4:(NF-κB)4 complexes, referred to as kappaBsomes. These IκBδ-centric "kappaBsomes" are distinct from the 2:2 complexes formed by IκBγ. The stability of the IκBδ tetramer is enhanced upon association with NF-κB, and hence the high-MW assembly is essential for NF-κB inhibition. Furthermore, weakening of the IκBδ tetramer impairs both its association with NF-κB subunits and stimulus-dependent processing into p52. The unique ability of p100/IκBδ to stably interact with all NF-κB subunits by forming kappaBsomes demonstrates its importance in sequestering NF-κB subunits and releasing them as dictated by specific stimuli for developmental programs.


Asunto(s)
Proteínas I-kappa B , Complejos Multiproteicos , Subunidad p52 de NF-kappa B , Proteínas , Proteolisis , Células 3T3 , Animales , Cristalografía por Rayos X , Humanos , Proteínas I-kappa B/química , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Subunidad p52 de NF-kappa B/química , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Genes Dev ; 23(4): 482-95, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19240134

RESUMEN

Phosphorylation is essential for the SR family of splicing factors/regulators to function in constitutive and regulated pre-mRNA splicing; yet both hypo- and hyperphosphorylation of SR proteins are known to inhibit splicing, indicating that SR protein phosphorylation must be tightly regulated in the cell. However, little is known how SR protein phosphorylation might be regulated during development or in response to specific signaling events. Here, we report that SRPK1, a ubiquitously expressed SR protein-specific kinase, directly binds to the cochaperones Hsp40/DNAjc8 and Aha1, which mediate dynamic interactions of the kinase with the major molecular chaperones Hsp70 and Hsp90 in mammalian cells. Inhibition of the Hsp90 ATPase activity induces dissociation of SRPK1 from the chaperone complexes, which can also be triggered by a stress signal (osmotic shock), resulting in translocation of the kinase from the cytoplasm to the nucleus, differential phosphorylation of SR proteins, and alteration of splice site selection. These findings connect the SRPK to the molecular chaperone system that has been implicated in numerous signal transduction pathways and provide mechanistic insights into complex regulation of SR protein phosphorylation and alternative splicing in response to developmental cues and cellular signaling.


Asunto(s)
Empalme Alternativo/fisiología , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN Intergénico/genética , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Indicadores y Reactivos/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal , Sorbitol/farmacología , Estrés Fisiológico , Técnicas del Sistema de Dos Híbridos
19.
PLoS Biol ; 11(9): e1001647, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24019758

RESUMEN

NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components--first, DNA binding domain of RelA interacts with the KIX domain of CBP/p300, and second, the transcriptional activation domain (TAD) of RelA binds to the TAZ1 domain of CBP/p300. A phosphorylation event of a well-conserved RelA(Ser276) is prerequisite for the former interaction to occur and is considered a decisive factor for the overall RelA:CBP/p300 interaction. The role of the latter interaction in the transcription of RelA-activated genes remains unclear. Here we provide the solution structure of the latter component of the RelA:CBP complex by NMR spectroscopy. The structure reveals the folding of RelA-TA2 (a section of TAD) upon binding to TAZ1 through its well-conserved hydrophobic sites in a series of grooves on the TAZ1 surface. The structural analysis coupled with the mechanistic studies by mutational and isothermal calorimetric analyses allowed the design of RelA-mutants that selectively abrogated the two distinct components of the RelA:CBP/p300 interaction. Detailed studies of these RelA mutants using cell-based techniques, mathematical modeling, and genome-wide gene expression analysis showed that a major set of the RelA-activated genes, larger than previously believed, is affected by this interaction. We further show how the RelA:CBP/p300 interaction controls the nuclear response of NF-κB through the negative feedback loop of NF-κB pathway. Additionally, chromatin analyses of RelA target gene promoters showed constitutive recruitment of CBP/p300, thus indicating a possible role of CBP/p300 in recruitment of RelA to its target promoter sites.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Fosfoproteínas/metabolismo , Factor de Transcripción ReIA/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Línea Celular , Proliferación Celular , Proteína p300 Asociada a E1A/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , FN-kappa B/genética , Fosfoproteínas/genética , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Factor de Transcripción ReIA/genética , Transcripción Genética
20.
PLoS Biol ; 11(6): e1001581, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776406

RESUMEN

Activation of the IκB kinase (IKK) is central to NF-κB signaling. However, the precise activation mechanism by which catalytic IKK subunits gain the ability to induce NF-κB transcriptional activity is not well understood. Here we report a 4 Å x-ray crystal structure of human IKK2 (hIKK2) in its catalytically active conformation. The hIKK2 domain architecture closely resembles that of Xenopus IKK2 (xIKK2). However, whereas inactivated xIKK2 displays a closed dimeric structure, hIKK2 dimers adopt open conformations that permit higher order oligomerization within the crystal. Reversible oligomerization of hIKK2 dimers is observed in solution. Mutagenesis confirms that two of the surfaces that mediate oligomerization within the crystal are also critical for the process of hIKK2 activation in cells. We propose that IKK2 dimers transiently associate with one another through these interaction surfaces to promote trans auto-phosphorylation as part of their mechanism of activation. This structure-based model supports recently published structural data that implicate strand exchange as part of a mechanism for IKK2 activation via trans auto-phosphorylation. Moreover, oligomerization through the interfaces identified in this study and subsequent trans auto-phosphorylation account for the rapid amplification of IKK2 phosphorylation observed even in the absence of any upstream kinase.


Asunto(s)
Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X , Activación Enzimática , Células HEK293 , Humanos , Modelos Moleculares , Fosforilación , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Soluciones , Relación Estructura-Actividad , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA